rRAP: Real-Time Adaptive Penalization for Streaming Lasso Models
Version 1.1

An implementation of the Real-time Adaptive Penalization (RAP) algorithm through which to iteratively update a regularization parameter in a streaming context.

AuthorRicardo Pio Monti
Date of publication2016-10-31 16:53:55
MaintainerRicardo Pio Monti <ricardo.monti08@gmail.com>
LicenseGPL-2
Version1.1
Package repositoryView on CRAN
InstallationInstall the latest version of this package by entering the following in R:
install.packages("rRAP")

Getting started

Package overview

Popular man pages

predict.RAP: Predict method for RAP objects
RAP: Initialization of a RAP object
rRAP-package: Real-Time Adaptive Penalization for Streaming Lasso Models
update.RAP: Update sparsity parameter and regression coefficients
See all...

All man pages Function index File listing

Man pages

predict.RAP: Predict method for RAP objects
RAP: Initialization of a RAP object
rRAP-package: Real-Time Adaptive Penalization for Streaming Lasso Models
update.RAP: Update sparsity parameter and regression coefficients

Functions

RAP Man page Source code
getGradientLARS Source code
getGradientLARS_Approx Source code
predict.RAP Man page Source code
rRAP Man page
rRAP-package Man page
update.RAP Man page Source code

Files

NAMESPACE
R
R/predict.RAP.R
R/RAP.R
R/rRAP-internal.R
R/getGradientLARS.R
R/getGradientLARS_Approx.R
R/update.RAP.R
MD5
DESCRIPTION
man
man/update.RAP.Rd
man/predict.RAP.Rd
man/rRAP-package.Rd
man/RAP.Rd
rRAP documentation built on May 19, 2017, 10:20 a.m.

Questions? Problems? Suggestions? Tweet to @rdrrHQ or email at ian@mutexlabs.com.

Please suggest features or report bugs in the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.