filter | R Documentation |
Filtering of point clouds using different methods
filter( cloud, method, radius, min_neighbours, k, nSigma, edge_length, distance = "euclidean", threads = 1L, verbose = FALSE, progress = FALSE, ... )
cloud |
A |
method |
A filtering method to use. It most be |
radius |
A |
min_neighbours |
An |
k |
An |
nSigma |
A |
edge_length |
A positive |
distance |
Type of distance to calculate. |
threads |
An |
verbose |
If TRUE, log messages to the console. |
progress |
If TRUE, log a progress bar when |
... |
Arguments passed to |
A data.table
with the filtered points
J. Antonio Guzmán Q.
#Load data data("pc_tree") #Move pc_tree for comparison pc_compare <- pc_tree pc_compare$X <- pc_compare$X - 7 #SOR filter r1 <- filter(pc_tree, method = "SOR", k = 30, nSigma = 1) rgl::plot3d(r1, col = "red") #Filter rgl::points3d(pc_compare, col = "black") #Original #min_neighbours filter r2 <- filter(pc_tree, "min_neighbors", radius = 0.02, min_neighbours = 20) rgl::plot3d(r2, col = "red") #Filter rgl::points3d(pc_compare, col = "black") #Original #voxel_center filter r3 <- filter(pc_tree, method = "voxel_center", edge_length = 0.1) rgl::plot3d(r3, col = "red") #Filter rgl::points3d(pc_compare, col = "black") #Original
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.