thomas_2012 | R Documentation |
Thomas model (2012) for fitting thermal performance curves
thomas_2012(temp, a, b, c, topt)
temp |
temperature in degrees centigrade |
a |
arbitrary constant |
b |
arbitrary constant |
c |
the range of temperatures over which growth rate is positive, or the thermal niche width (ºC) |
topt |
determines the location of the maximum of the quadratic portion of this function. When b = 0, tref would equal topt |
Equation:
rate = a \cdot exp^{b \cdot temp} \bigg(1-\bigg(\frac{temp - t_{opt}}{c}\bigg)^2\bigg)
Start values in get_start_vals
are derived from the data.
Limits in get_lower_lims
and get_upper_lims
are derived from the data or based on extreme values that are unlikely to occur in ecological settings.
a numeric vector of rate values based on the temperatures and parameter values provided to the function
Generally we found this model easy to fit.
Thomas, Mridul K., et al. A global pattern of thermal adaptation in marine phytoplankton. Science 338.6110, 1085-1088 (2012)
# load in ggplot
library(ggplot2)
# subset for the first TPC curve
data('chlorella_tpc')
d <- subset(chlorella_tpc, curve_id == 1)
# get start values and fit model
start_vals <- get_start_vals(d$temp, d$rate, model_name = 'thomas_2012')
# fit model
mod <- nls.multstart::nls_multstart(rate~thomas_2012(temp = temp, a, b, c, topt),
data = d,
iter = c(4,4,4,4),
start_lower = start_vals - 1,
start_upper = start_vals + 2,
lower = get_lower_lims(d$temp, d$rate, model_name = 'thomas_2012'),
upper = get_upper_lims(d$temp, d$rate, model_name = 'thomas_2012'),
supp_errors = 'Y',
convergence_count = FALSE)
# look at model fit
summary(mod)
# get predictions
preds <- data.frame(temp = seq(min(d$temp), max(d$temp), length.out = 100))
preds <- broom::augment(mod, newdata = preds)
# plot
ggplot(preds) +
geom_point(aes(temp, rate), d) +
geom_line(aes(temp, .fitted), col = 'blue') +
theme_bw()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.