Description Usage Arguments Details Value Examples
View source: R/rNonsingularWishart.R
Generate n
random matrices, distributed according to the Wishart distribution with parameters Sigma
and df
, W_p(Sigma, df).
1 2 | rNonsingularWishart(n, df, Sigma, covariance = FALSE,
simplify = "array")
|
n |
integer: the number of replications. |
df |
numeric parameter, “degrees of freedom”. |
Sigma |
positive definite (p * p) “scale” matrix, the matrix parameter of the distribution. |
covariance |
logical on whether a covariance matrix should be generated |
simplify |
logical or character string; should the result be
simplified to a vector, matrix or higher dimensional array if
possible? For |
If X_1, ..., X_m is a sample of m independent multivariate Gaussians with mean vector 0, and covariance matrix Sigma, the distribution of M = X'X is W_p(Sigma, m).
A numeric array of dimension p * p * n
, where each array is a positive semidefinite matrix, a realization of the Wishart distribution W_p(Sigma, df)
1 | rNonsingularWishart(2, 20, diag(1, 5))
|
Attaching package: ‘rWishart’
The following object is masked from ‘package:stats’:
rWishart
, , 1
[,1] [,2] [,3] [,4] [,5]
[1,] 27.570534 7.884664 8.059230 6.589777 -4.581074
[2,] 7.884664 17.299404 2.899076 -3.231619 1.760020
[3,] 8.059230 2.899076 21.751498 -5.333127 4.665002
[4,] 6.589777 -3.231619 -5.333127 16.180899 -7.651389
[5,] -4.581074 1.760020 4.665002 -7.651389 16.212315
, , 2
[,1] [,2] [,3] [,4] [,5]
[1,] 11.334864 -4.9732218 -0.986789 -5.046448 -0.1582060
[2,] -4.973222 23.4980530 3.100825 2.157272 0.5676472
[3,] -0.986789 3.1008247 15.902792 8.213986 -1.5938394
[4,] -5.046448 2.1572722 8.213986 30.593981 2.2248252
[5,] -0.158206 0.5676472 -1.593839 2.224825 18.2645161
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.