Nothing
#' @name nbclust
#' @title Data read and estimate the cluster number
#' @author {
#' Ali Arminian <abeyran@gmail.com>
#' }
#' @description
#' `r lifecycle::badge("experimental")`
#'
#' `nbclust()` reads and prepares the data, and
#' determine the optimum number of clusters using Average
#' Silhouette Method by `factoextra` package.
#' The average silhouette approach assesses the quality of
#' clustering by evaluating how well each object fits within
#' its cluster. A high average silhouette width signifies
#' effective clustering. This method calculates the average
#' silhouette for different values of k, and the optimal
#' number of clusters (k) is the one that maximizes the
#' average silhouette across a range of potential k values.
#'
#' @details
#' The `silhouette` coefficient (SC) refers to a criterion
#' to decide number of clusters.It is defined as follows.
#' Though there are numerous methods determining number
#' of clusters such as `the gap statistic` etc.
#'
#' \loadmathjax
#' \mjsdeqn{SC = maxK{\bar{S}K}}.
#'
#' In other words, for each observation \mjseqn{i}, the
#' `silhouette width` \mjseqn{s(i)} is defined as follows:
#' Put \mjseqn{a(i)} = average dissimilarity between i and all
#' other points of the cluster to which i belongs (if i is the only
#' observation in its cluster, \mjseqn{s(i):= 0} without further
#' calculations). For all other clusters C, put \mjseqn{d(i, C)}
#' = average dissimilarity of i to all observations of C.
#' The smallest of these \mjseqn{d(i, C)} is
#' \mjseqn{b(i)=min\it(C) d(i, C)}, and can be seen as the
#' dissimilarity between i and its “neighbor” cluster, i.e.,
#' the nearest one to which it does not belong. Finally,
#' \mjsdeqn{s(i)=\frac{b(i)-a(i)}{max(a(i), b(i))}}
#'
#' * Note: The clustering methods can be: "average", "centroid",
#' "complete", "mcquitty", "median", "single", "ward.D", "ward.D2"
#' and, Distance methods can be as: "binary", "canberra", "euclidean",
#' "manhattan", "minkowski", "maximum", "pearson", "spearman", "kendall"
#' which may be used in `shipunov` or `factoextra` packages.
#' In this package we just applied `average=UPGMA` and `ward.D` algorithms.
#'
#' @param datap The data set
#' @param verbose If `verbose = TRUE` then some results are
#' @importFrom factoextra fviz_nbclust hcut
#'
#' @references
#' Lletı, R., Ortiz, M.C., Sarabia, L.A., Sánchez, M.S. 2004.
#' Selecting variables for k-means cluster analysis by using
#' a genetic algorithm that optimizes the silhouettes,
#' Analytica Chimica Acta, 515(1): 87-100.
#'
#' Rousseeuw, P.J. (1987) Silhouettes: A graphical aid to the
#' interpretation and validation of cluster analysis.
#' J. Comput. Appl. Math., 20, 53-65.
#'
#' https://uc-r.github.io/
#'
#' @return Returns a data frame
#' @usage nbclust(datap, verbose = FALSE)
#' @examples
#' \donttest{
#' library(factoextra)
#' data(maize)
#' maize <- as.data.frame(maize)
#' row.names(maize) <- maize[, 1]
#' maize[, 1] = NULL
#' GEN <- row.names(maize)
#' maize <- scale(maize)
#' nbclust(maize, verbose = FALSE)
#'
#' # Performing bootstrap or jackknife clustering
#' # by shipunov package. The examples should be run in the
#' # console manually due to problems occurs in the ORPHANED
#' # package `shipunov`.
#' #
#' # library(shipunov)
#' # 1- Bootstrap clustering:
#' # data.jb <- Jclust(maize,
#' # method.d = "euclidean",
#' # method.c = "average", n.cl = 2,
#' # bootstrap = TRUE)
#' #
#' # plot.Jclust(data.jb, top=TRUE, lab.pos=1,
#' # lab.offset=1, lab.col=2, lab.font=2)
#' # Fence(data.jb$hclust, GEN)
#' #
#' # data.jb <- Jclust(maize,
#' # method.d = "euclidean",
#' # method.c = "ward.D", n.cl = 2,
#' # bootstrap = TRUE)
#' #
#' # plot.Jclust(data.jb, top=TRUE, lab.pos=1,
#' # lab.offset=1, lab.col=2, lab.font=2)
#' # Fence(data.jb$hclust, GEN)
#' #
#' # if(verbose = TRUE):
#' # cat("\nnumber of iterations:\n", data.jb$iter, "\n")
#' #
#' # for "bootstrap":
#' # data.jb$mat <- as.matrix((data.jb$mat))
#' # data.jb$mat
#' # cat("\nmatrix of results:\n", data.jb$mat, "\n")
#' # cat("clustering info, by eucledean distance measure:\n")
#' # print(data.jb$hclust)
#' # cat("groups:\n", data.jb$gr, "\n")
#' # cat("\nsupport values:\n", data.jb$supp, "\n")
#' # cat("\nnumber of clusters used:\n", data.jb$n.cl, "\n")
#'
#' # 2- Jackknife clustering:
#' # data.jb <- Bclust(maize,
#' # method.d = "euclidean", method.c = "average",
#' # bootstrap = FALSE)
#' # plot(data.jb)
#' #
#' # data.jb <- Bclust(maize,
#' # method.d = "euclidean", method.c = "ward.D",
#' # bootstrap = FALSE)
#' # plot(data.jb)
#' #
#' # if(verbose = TRUE):
#' # For"jackknife":
#' # cat("Consensus:\n", data.jb$consensus, "\n")
#' # cat("Vlaues:\n", data.jb$values, "\n")
#' }
#' @export
nbclust <- function(datap, verbose = FALSE)
{
datap <- data.frame(datap)
for (i in seq_along(datap))
{
if(is.numeric(datap[, i])) {
datap[, i][is.na(datap[, i])] <- mean(datap[, i], na.rm = TRUE)
datap[, i] <- as.numeric(unlist(datap[, i]))
}
}
a <- factoextra::fviz_nbclust(datap, FUNcluster = hcut,
method = "silhouette", nboot=1000)
n.cl = which(a$data$y == max(a$data$y))
print(a)
class(n.cl) <- "data frame"
return(n.cl)
if(verbose) {
cat("The number of clusters using silhouette algorithm:", n.cl, "\n")
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.