inst/app/tools/help/rforest.md

Estimate a Random Forest

To create a Random Forest, first select the type (i.e., Classification or Regression), response variable, and one or more explanatory variables. Press the Estimate model button or CTRL-enter (CMD-enter on mac) to generate results.

The model can be "tuned" by changing the mtry, # trees, Min node size, and Sample fraction inputs. The best way to determine the optimal values for these hyper parameters is to use Cross-Validation. In radiant, you can use the cv.rforest function for this purpose. See the documentation for more information.

Report > Rmd

Add code to Report > Rmd to (re)create the analysis by clicking the icon on the bottom left of your screen or by pressing ALT-enter on your keyboard.

R-functions

For an overview of related R-functions used by Radiant to estimate a neural network model see Model > Neural network.

The key function from the ranger package used in the rforest tool is ranger.



Try the radiant.model package in your browser

Any scripts or data that you put into this service are public.

radiant.model documentation built on Nov. 2, 2024, 1:10 a.m.