ElNino_ERSST_region_1and2: Sea surface temperature data set from January 1950 to...

Description Usage Format Details Source References Examples

Description

Sea surface temperature data set from January 1950 to December 2018 observed by the extended reconstructed sea surface temperature

Usage

1
2
3
4

Format

An object of class sfts.

Details

These averaged monthly sea surface temperatures are measured by the different moored buoys in the "Nino region" defined by the coordinates 0-10 degree South and 90-80 degree West.

Source

National Weather Service Climate Prediction Center website at http://www.cpc.ncep.noaa.gov/data/indices/sstoi.indices. The data is the third column with the title NINO1+2.

References

A. Antoniadis and T. Sapatinas (2003) "Wavelet methods for continuous-time prediction using Hilbert-valued autoregressive processes", Journal of Multivariate Analysis, 87(1), 133-158.

P. C. Besse, H. Cardot and D. B. Stephenson (2000) "Autoregressive forecasting of some functional climatic variations", Scandinavian Journal of Statistics, 27(4), 673-687.

F. Ferraty, A. Rabhi and P. Vieu (2005) "Conditional quantiles for dependent functional data with application to the climate EL Nino Phenomenon", Sankhya: The Indian Journal of Statistics, 67(2), 378-398.

F. Ferraty and P. Vieu (2007) Nonparametric functional data analysis, New York: Springer.

R. J. Hyndman and H. L. Shang (2010) "Rainbow plots, bagplots, and boxplots for functional data", Journal of Computational and Graphical Statistics, 19(1), 29-45.

E. Moran, R. Adams, B. Bakoyema, S. Fiorini and B. Boucek (2006) "Human strategies for coping with El Nino related drought in Amazonia", Climatic Change, 77(3-4), 343-361.

A. Timmermann, J. Oberhuber, A. Bacher, M. Esch, M. Latif and E. Roeckner (1999) "Increased El Nino frequency in a climate model forced by future greenhouse warming", Nature, 398(6729), 694-697.

Examples

1
2
3
4

Example output

Loading required package: MASS
Loading required package: pcaPP

rainbow documentation built on May 2, 2019, 3:30 p.m.