R/data.R

#' @name K_small.tif
#' @title Example Of Carrying Capacity Map (Small)
#' @docType data
#'
#' @description
#' [`SpatRaster`][terra::SpatRaster-class] object that can be used a carrying
#' capacity map to [`initialise`] data necessary to perform a simulation
#' with the [`sim`] function.
#' This map is compatible with [`n1_small.tif`].
#'
#' @format [`SpatRaster`][terra::SpatRaster-class] object with 15 rows
#' and 10 columns containing integer values 0-100 and NA's indicating
#' unsuitable areas.
#'
#' @source Data generated in-house to serve as an example
#' (using spatial autocorrelation).
#'
#' @examples
#' system.file("input_maps/K_small.tif", package = "rangr")
#'
#' @srrstats {G1.4} uses roxygen documentation
#' @srrstats {G5.1} dataset used in examples is exported and documented
NULL


#' @name K_small_changing.tif
#' @title Example Of Changing Carrying Capacity Maps (Small)
#' @docType data
#'
#' @description
#' [`SpatRaster`][terra::SpatRaster-class] object that can be used as carrying
#' capacity maps to [`initialise`] data necessary to perform a simulation
#' with the [`sim`] function.
#' To utilise these maps in [`initialise`] the user first must
#' use [`K_get_interpolation`] to generate a map for every time step
#' of the simulation.
#' These maps are compatible with [`n1_small.tif`].
#' Each subsequent map contains a virtual environment with greater
#' carrying capacity than the previous one.
#'
#' @format [`SpatRaster`][terra::SpatRaster-class] object with 3 layers,
#' each has 15 rows and 10 columns containing integer values 0-170 and
#' NA's that indicates unsuitable areas.
#'
#'
#' @source Data generated in-house to serve as an example
#' (using spatial autocorrelation).
#'
#' @examples
#' system.file("input_maps/K_small_changing.tif", package = "rangr")
#'
#' @srrstats {G1.4} uses roxygen documentation
#' @srrstats {G5.1} dataset used in examples is exported and documented
NULL


#' @name K_big.tif
#' @title Example Of Carrying Capacity Map (Big)
#' @docType data
#'
#' @description
#' [`SpatRaster`][terra::SpatRaster-class] object that can be used as a
#' carrying capacity map to [`initialise`] data necessary
#' to perform a simulation with the [`sim`] function. This map is compatible
#' with [`n1_big.tif`].
#'
#' @format [`SpatRaster`][terra::SpatRaster-class] object with 100 rows
#' and 100 columns containing integer values 0-25 and NA's indicating
#' unsuitable areas.
#'
#' @source Data generated in-house to serve as an example
#' (using spatial autocorrelation).
#'
#' @examples
#' system.file("input_maps/K_big.tif", package = "rangr")
#'
#' @srrstats {G1.4} uses roxygen documentation
NULL



#' @name n1_small.tif
#' @title Example Of Abundance Map At First Time Step Of The Simulation (Small)
#' @docType data
#'
#' @description
#' [`SpatRaster`][terra::SpatRaster-class] object that can be used a
#' as simulation starting point to [`initialise`] data necessary
#' to perform a simulation with the [`sim`] function. This map is compatible
#' with [`K_small.tif`] and [`K_small_changing.tif`] maps.
#'
#' @format [`SpatRaster`][terra::SpatRaster-class] object with 15 rows
#' and 10 columns containing integer values 0-10 and NA's
#' indicating unsuitable areas.
#'
#' @source Data generated in-house to serve as an example.
#'
#' @examples
#' system.file("input_maps/n1_small.tif", package = "rangr")
#'
#' @srrstats {G1.4} uses roxygen documentation
NULL


#' @name n1_big.tif
#' @title Example Of Abundance Map At First Time Step Of The Simulation (Big)
#' @docType data
#'
#' @description
#' [`SpatRaster`][terra::SpatRaster-class] object that can be used a
#' as simulation starting point to [`initialise`] data necessary
#' to perform a simulation with the [`sim`] function. This map is compatible
#' with [`K_big.tif`] map.
#'
#' @format [`SpatRaster`][terra::SpatRaster-class] object with 100 rows
#' and 100 columns containing integer values 0-50 and NA's
#' that indicates unsuitable areas.
#'
#' @source Data generated in-house to serve as an example.
#'
#' @examples
#' system.file("input_maps/n1_big.tif", package = "rangr")
#'
#' @srrstats {G1.4} uses roxygen documentation
#' @srrstats {G5.1} dataset used in examples is exported and documented
NULL

#' @name K_small_lon_lat.tif
#' @title Example Of Carrying Capacity Map (Small)
#' @docType data
#'
#' @description
#' [`SpatRaster`][terra::SpatRaster-class] object that represents a carrying
#' capacity map projected to WGS 84 (CRS84) from the original raster `K_small`.
#' This map can be used as a carrying capacity map to [`initialise`] data necessary
#' to perform a simulation with the [`sim`] function. It is compatible with the `n1_small_lon_lat.tif` raster.
#'
#' @format [`SpatRaster`][terra::SpatRaster-class] object with 12 rows
#' and 14 columns containing integer values 0-100 and NA's indicating unsuitable areas.
#'
#' @source Data generated in-house to serve as an example
#' (using spatial autocorrelation).
#'
#' @examples
#' system.file("input_maps/K_small_lon_lat.tif", package = "rangr")
#'
#' @srrstats {G1.4} uses roxygen documentation
#' @srrstats {G5.1} dataset used in examples is exported and documented
NULL


#' @name K_small_changing_lon_lat.tif
#' @title Example Of Changing Carrying Capacity Maps (Small)
#' @docType data
#'
#' @description
#' [`SpatRaster`][terra::SpatRaster-class] object representing changing carrying
#' capacity maps projected to WGS 84 (CRS84) from the original raster
#' `K_small_changing`. These maps can be used as carrying capacity maps to [`initialise`]
#' data necessary to perform a simulation with the [`sim`] function. To utilise
#' these maps in [`initialise`] the user must first use [`K_get_interpolation`]
#' to generate a map for every time step of the simulation. These maps are
#' compatible with the `n1_small_lon_lat.tif` raster.
#'
#' @format [`SpatRaster`][terra::SpatRaster-class] object with 3 layers,
#' each having 12 rows and 14 columns containing integer values 0-170 and NA's indicating unsuitable areas.
#'
#' @source Data generated in-house to serve as an example
#' (using spatial autocorrelation).
#'
#' @examples
#' system.file("input_maps/K_small_changing_lon_lat.tif", package = "rangr")
#'
#' @srrstats {G1.4} uses roxygen documentation
#' @srrstats {G5.1} dataset used in examples is exported and documented
NULL


#' @name K_big_lon_lat.tif
#' @title Example Of Carrying Capacity Map (Big)
#' @docType data
#'
#' @description
#' [`SpatRaster`][terra::SpatRaster-class] object representing a carrying
#' capacity map projected to WGS 84 (CRS84) from the original raster `K_big`.
#'This map can be used as a carrying capacity map to [`initialise`] data necessary
#' to perform a simulation with the [`sim`] function. It is compatible with the `n1_big_lon_lat.tif` raster.
#'
#' @format [`SpatRaster`][terra::SpatRaster-class] object with 74 rows
#' and 125 columns containing integer values 0-25 and NA's
#'indicating unsuitable areas.
#'
#' @source Data generated in-house to serve as an example
#' (using spatial autocorrelation).
#'
#' @examples
#' system.file("input_maps/K_big_lon_lat.tif", package = "rangr")
#'
#' @srrstats {G1.4} uses roxygen documentation
NULL


#' @name n1_small_lon_lat.tif
#' @title Example Of Abundance Map At First Time Step Of The Simulation (Small)
#' @docType data
#'
#' @description
#' [`SpatRaster`][terra::SpatRaster-class] object representing an abundance map
#' at the first time step of the simulation projected to WGS 84 (CRS84) from the
#' original raster `n1_small`. This map can be used as a simulation starting point
#' to [`initialise`] data necessary to perform a simulation with the [`sim`]
#' function. It is compatible with the
#' `K_small_lon_lat.tif` and `K_small_changing_lon_lat.tif` maps.
#'
#' @format [`SpatRaster`][terra::SpatRaster-class] object with 12 rows
#' and 14 columns containing integer values 0-10 and NA's
#' indicating unsuitable areas.
#'
#' @source Data generated in-house to serve as an example.
#'
#' @examples
#' system.file("input_maps/n1_small_lon_lat.tif", package = "rangr")
#'
#' @srrstats {G1.4} uses roxygen documentation
NULL


#' @name n1_big_lon_lat.tif
#' @title Example Of Abundance Map At First Time Step Of The Simulation (Big)
#' @docType data
#'
#' @description
#' [`SpatRaster`][terra::SpatRaster-class] object representing an abundance map
#' at the first time step of the simulation projected to WGS 84 (CRS84) from the
#' original raster `n1_big`. This map can be used as a simulation starting point
#' to [`initialise`] data necessary to perform a simulation with the [`sim`]
#' function. It is compatible with the `K_big_lon_lat.tif` map.
#'
#' @format [`SpatRaster`][terra::SpatRaster-class] object with 74 rows
#' and 125 columns containing integer values 0-50 and NA's
#' indicating unsuitable areas.
#'
#' @source Data generated in-house to serve as an example.
#'
#' @examples
#' system.file("input_maps/n1_big_lon_lat.tif", package = "rangr")
#'
#' @srrstats {G1.4} uses roxygen documentation
#' @srrstats {G5.1} dataset used in examples is exported and documented
NULL


#' @title Example Of Observation Points List
#'
#' @description
#' A `data.frame` containing a sample input data to the function
#' [`get_observations`]  when `type` argument is set to "from_file".
#' This data is compatible with [`n1_small.tif`],
#'  [`K_small.tif`] and [`K_small_changing.tif`] maps.
#'
#' @format A data frame with 1500 rows and 3 variables:
#' \describe{
#'   \item{x}{x coordinate}
#'   \item{y}{y coordinate}
#'   \item{time_step}{time_step at which the abundances should be observed}
#' }
#'
#' @source Data generated in-house to serve as an example
#'
#' @srrstats {G1.4} uses roxygen documentation
#' @srrstats {G5.1} dataset used in examples is exported and documented
"observations_points"

Try the rangr package in your browser

Any scripts or data that you put into this service are public.

rangr documentation built on April 12, 2025, 1:40 a.m.