Nothing
#' Compute the k-bottom set for a set of intervals
#'
#' Suppose that we select one point from each of a set of n intervals and rank
#' them. The k-bottom set is the set of intervals whose points can have a rank
#' of n + 1 - k or higher.
#'
#' See section 4.2 of Rising (2021).
#'
#' @param intervals data frame (see [rankUncertainty::generateIntervals] for
#' the required format)
#' @param k cutoff for inclusion
#'
#' @return Indices of intervals in the k-bottom set.
#' @export
#'
#' @references
#' Rising, Justin (2021). _Uncertainty in Ranking_. arXiv:2107.03459.
#'
#' @examples
#' intervals <- data.frame(left = 1:4, right = 1:4 + 0.5)
#' bottomSet(intervals, 2)
bottomSet <- function(intervals, k)
{
errorCheck(intervals)
if (!checkNumericClass(k))
{
stop('k must be numeric')
}
counts <- countPrincipalDownSets(-intervals[, 'right'], -intervals[, 'left'])
which(counts <= k)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.