Quantitative studies of disparate impact face two key challenges:
The rar
package supports risk-adjusted regression, a framework for
mitigating included-variable bias. It computes risk-adjusted disparities
and performs an interpretable sensitivity analysis that can be used to
assess the robustness of regression results to omitted-variable bias.
See “Mitigating Included- and Omitted-Variable Bias in Estimates of
Disparate” for more details.
You can install the latest stable release of rar
from CRAN with:
install.packages("rar")
You can install the development version of rar
from
GitHub with:
# install.packages("devtools")
devtools::install_github("jgaeb/rar")
To perform risk-adjusted regression, use the sens()
function.
library(rar)
# Generate some data
set.seed(1)
df <- tibble::tibble(
group = factor(
sample(c("a", "b"), 1000, replace = TRUE),
levels = c("a", "b")
),
p = runif(1000)^2,
frisked = runif(1000) < p + 0.1 * (group != "a")
)
# Compute risk-adjusted regression coefficients and perform sensitivity analysis
sens(df, group, frisked, p, "a", 0.1, eta = 0.001, m = 10)
#> # A tibble: 10 × 3
#> epsilon beta_min_b beta_max_b
#> <dbl> <dbl> <dbl>
#> 1 0 0.102 0.102
#> 2 0.0111 0.0752 0.125
#> 3 0.0222 0.0472 0.151
#> 4 0.0333 0.0185 0.178
#> 5 0.0444 -0.0106 0.207
#> 6 0.0556 -0.0394 0.236
#> 7 0.0667 -0.0677 0.265
#> 8 0.0778 -0.0950 0.295
#> 9 0.0889 -0.123 0.324
#> 10 0.1 -0.151 0.354
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.