Description Usage Arguments Value See Also Examples
The function does K-fold cross validaton (CV) to choose an optimal pair of (lambda
, alpha
)
on which the model performs best according to the chosen error metric: mean squared error
or mean absolute error.
1 2 | rarefit.cv(fitObj, y, X, errtype = "mean-squared-error", nfolds = 5,
...)
|
fitObj |
Output of |
y |
Response variable. |
X |
|
errtype |
Type of error metric used in cross validation. Available choices are mean-squared-error (default) and mean-absolute-error. |
nfolds |
Number of folds (default is 5) |
... |
Other arguments that can be passed to |
folds |
A length- |
errs |
A |
m |
A |
se |
A |
ibest |
Indices of pair of ( |
lambda.best |
Value of |
alpha.best |
Value of |
1 2 3 4 5 6 7 8 9 10 11 12 | ## Not run:
# See vignette for more details.
set.seed(100)
ts <- sample(1:length(data.rating), 400) # Train set indices
# Fit the model on train set
ourfit <- rarefit(y = data.rating[ts], X = data.dtm[ts, ], hc = data.hc, lam.min.ratio = 1e-6,
nlam = 20, nalpha = 10, rho = 0.01, eps1 = 1e-5, eps2 = 1e-5, maxite = 1e4)
# Cross validation
ourfit.cv <- rarefit.cv(ourfit, y = data.rating[ts], X = data.dtm[ts, ],
rho = 0.01, eps1 = 1e-5, eps2 = 1e-5, maxite = 1e4)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.