Nothing
knitr::opts_chunk$set(fig.width=10, fig.height=10,fig.asp = 0.618, out.width = "95%", fig.align = "center", fig.dpi = 150, collapse = FALSE, comment = "#") #knitr::opts_chunk$set(dev = 'pdf')
require(rasterdiv) require(terra) require(rasterVis) require(RColorBrewer) require(viridis) require(latticeExtra) require(ggplot2)
This vignette uses rasterdiv to derive classic and multidimension area-based Rao's index from an input vector layer and multiple raster layers.
A SpatRaster called copNDVI is loaded together with the package rasterdiv. copNDVI is a 8-bit raster, meaning that pixel values range from 0 to 255. You could stretch it to match a more familiar (-1,1) values range using terra::stretch(copNDVI,minv=-1,maxv=1)
. The original dataset was resampled to 1/10th of its spatial resolution and pixels with values 253, 254 and 255 (water) were set as NA's.
copNDVI <- load_copNDVI() copNDVIlr <- terra::aggregate(copNDVI, fact=10) values(copNDVIlr) <- as.integer(values(copNDVIlr)) world <- load_world()
RaoC <- paRao(x=copNDVIlr, area=world, field='CONTINENT', alpha=c(1,2))
#Plot classic area-based Rao's index plot(RaoC, col=hcl(RaoC$alpha.1*10), main="Classic Rao's index per continent alpha 1") text(RaoC, label=paste("Rao'Q =", round(RaoC$alpha.1,1)), col="black", family="Arial", halo=TRUE)
# Adding a second "noise" SpatRaster layer # copNDVIlr <- terra::aggregate(copNDVI, fact=20) values(copNDVIlr) <- as.integer(values(copNDVIlr)) noise = rast(copNDVIlr) noise[] = as.integer(runif(n=ncell(noise),min=1, max=10)) RaoMC <- paRao(x=c(copNDVIlr,noise), area=world, field='CONTINENT', alpha=2, method="multidimension", simplify=0)
#Plot area-based Rao's index plot(RaoMC, col=hcl(RaoMC$alpha.2*10000), main="Multidimension Rao's index per continent alpha 10") text(RaoMC, label=paste("Rao'Q =", round(RaoMC$alpha.2,3)), col="black", family="Arial", halo=TRUE)
knitr::include_graphics("Rao_areabased_multidimensional.png")
#Subset africa <- subset(world, world$CONTINENT=="Africa") #Make the raster grid africa.r <- rast(ext(africa), nrow=20, ncol=20, crs = "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0") africa.r[] <- 1:ncell(africa.r) #Vectorise the SpatRaster africa.v = as.polygons(africa.r)
#Derive Rao's (alpha=2) for each grid cell RaoGRID <- paRao(x=copNDVIlr, area=africa.v, field='lyr.1', alpha=2, simplify=0, na.tolerance=0.2)
RaoGRID <- readRDS("RaoGRID.RDS")
#Transform the spatial polygon data frame in a raster layer that can be used in levelplot rr <- rast(RaoGRID, ncol=20, nrow=20) values(rr) <- RaoGRID$alpha.2
#Plot Rao's per grid cell ggplot() + geom_raster(data = as.data.frame(rr, xy=TRUE), aes(x = x, y = y, fill = lyr.1)) + scale_fill_viridis(option = "D", direction = 1) + geom_polygon(data = fortify(as(africa.v, "Spatial")), aes(x = long, y = lat, group = group), fill = NA, color = "grey", linewidth=0.3) + geom_polygon(data = fortify(as(world, "Spatial")), aes(x = long, y = lat, group = group), fill = NA, color = "black", , linewidth=0.5) + theme(legend.position = "none", aspect.ratio = 0.5)
knitr::include_graphics("vignette02fig03.png")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.