print.rbmcc | R Documentation |
print summary of Risk-based Multivariate Control Charts
## S3 method for class 'rbmcc'
print(x, digits = getOption("digits"), ...)
x |
an object of class 'rbmcc'. |
digits |
the number of significant digits to use when |
... |
other graphical parameters. |
No return value, called for side effects
Aamir Saghir, Attila I. Katona, Zsolt T. Kosztyan*
e-mail: kzst@gtk.uni-pannon.hu
Katona, A. I., Saghir, A., Hegedűs, C., & Kosztyán, Z. T. (2023). Design of Risk-Based Univariate Control Charts with Measurement Uncertainty. IEEE Access, 11, 97567-97573.
Kosztyán, Z. T., & Katona, A. I. (2016). Risk-based multivariate control chart. Expert Systems with Applications, 62, 250-262.
data_gen
, rbcc
, rbcc_opt
, rbcusumcc
, rbcusumcc_opt
, rbewmacc
, rbewmacc_opt
, rbmacc
, rbmacc_opt
, rbmcc
, rbmcc_opt
, summary.rbcc
.
# Data Generation and multivariate T2 chart.
# Data generation for a matrix X
mu_X <- c(0,1,2) # vector of means.
va_X <- c(1,2, 0.5) # vector of standard deviation.
sk_X <- c(0,0.5, 0.8) # vector of skewness.
ku_X <- c(3,3.5, 4) # vector of kurtosis.
obs <- 200 # Total number of observations of a process.
# Example for generation of data matrix X of 200 obervations of 3 variables.
X <- data_gen (obs, mu_X, va_X, sk_X, ku_X)
# Data generation for measurement error matrix UC.
mu_UC <- c(0,0,0) # vector of means of measurement errors.
va_UC <- c(1,2, 0.5) # vector of standard deviation of measurement errors.
sk_UC <- c(0,0,0) # Vector of skewness of measurement errors.
ku_UC <- c(3,3,3) # Vector of kurtosis of measurement errors.
# Example for generation of measurement error matrix of 3 variables.
UC <- data_gen(obs,mu_UC, va_UC, sk_UC, ku_UC)
# with default vector of decision costs
C <- c(1,1,1,1) # vector of decision costs
H <- rbmcc(X, UC, C) # for subgroups of size 1
print(H)
# optimal risk-based multivariate control chart
H_opt <- rbmcc_opt(X, UC, C)
print(H_opt)
# Example of considering the real sample
data("t2uc") # load the dataset
X <- as.matrix(t2uc[,1:2]) # get optical measurements ar "real" values
UC <- as.matrix(t2uc[,5:6]) # get measurement errors
C <- c(1,20,160,5) # define cost structure
# Fit optimized RBT2 control chart
R <- rbmcc_opt(X, UC, C, 1,confidence_level = 0.99)
print (R)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.