View source: R/validate_datalong.R
validate_datalong | R Documentation |
Validate a longdata object
validate_datalong(data, vars)
validate_datalong_varExists(data, vars)
validate_datalong_types(data, vars)
validate_datalong_notMissing(data, vars)
validate_datalong_complete(data, vars)
validate_datalong_unifromStrata(data, vars)
validate_dataice(data, data_ice, vars, update = FALSE)
data |
a |
vars |
a |
data_ice |
a |
update |
logical, indicates if the ICE data is being set for the first time or if an update is being applied |
These functions are used to validate various different parts of the longdata object
to be used in draws()
, impute()
, analyse()
and pool()
. In particular:
validate_datalong_varExists - Checks that each variable listed in vars
actually exists
in the data
validate_datalong_types - Checks that the types of each key variable is as expected i.e. that visit is a factor variable
validate_datalong_notMissing - Checks that none of the key variables (except the outcome variable) contain any missing values
validate_datalong_complete - Checks that data
is complete i.e. there is 1 row for each subject *
visit combination. e.g. that nrow(data) == length(unique(subjects)) * length(unique(visits))
validate_datalong_unifromStrata - Checks to make sure that any variables listed as stratification variables do not vary over time. e.g. that subjects don't switch between stratification groups.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.