Nothing
knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
This vignette demonstrates how to:
{rbmi}
package.{rbmiUtils}
.Analyze the imputed data using:
A standard ANCOVA on a continuous endpoint (CHG
)
CRIT1FLN
using {beeca}
This pattern enables reproducible workflows where imputation and analysis can be separated and revisited independently.
This approach applies Rubin’s Rules for inference after multiple imputation:
We fit a model to each imputed dataset, dervive a response variable on the CHG score, extract marginal effects or other statistics of interest, and combine the results into a single inference using Rubin’s combining rules.
library(dplyr) library(tidyr) library(readr) library(purrr) library(rbmi) library(beeca) library(rbmiUtils)
set.seed(1974)
data("ADEFF") ADEFF <- ADEFF %>% mutate( TRT = factor(TRT01P, levels = c("Placebo", "Drug A")), USUBJID = factor(USUBJID), AVISIT = factor(AVISIT) )
vars <- set_vars( subjid = "USUBJID", visit = "AVISIT", group = "TRT", outcome = "CHG", covariates = c("BASE", "STRATA", "REGION") )
method <- method_bayes( n_samples = 100, control = control_bayes(warmup = 200, thin = 2) )
dat <- ADEFF %>% select(USUBJID, STRATA, REGION, REGIONC, TRT, BASE, CHG, AVISIT) draws_obj <- draws(data = dat, vars = vars, method = method) impute_obj <- impute(draws_obj, references = c("Placebo" = "Placebo", "Drug A" = "Placebo")) ADMI <- get_imputed_data(impute_obj)
ADMI <- ADMI %>% mutate( CRIT1FLN = ifelse(CHG > 3, 1, 0), CRIT1FL = ifelse(CRIT1FLN == 1, "Y", "N"), CRIT = "CHG > 3" )
ana_obj_ancova <- analyse_mi_data( data = ADMI, vars = vars, method = method, fun = ancova )
pool_obj_ancova <- pool(ana_obj_ancova) print(pool_obj_ancova)
tidy_pool_obj(pool_obj_ancova)
gcomp_responder <- function(data, ...) { model <- glm(CRIT1FLN ~ TRT + BASE + STRATA + REGION, data = data, family = binomial) marginal_fit <- get_marginal_effect( model, trt = "TRT", method = "Ge", type = "HC0", contrast = "diff", reference = "Placebo" ) res <- marginal_fit$marginal_results list( trt = list( est = res[res$STAT == "diff", "STATVAL"][[1]], se = res[res$STAT == "diff_se", "STATVAL"][[1]], df = NA ) ) }
vars_binary <- set_vars( subjid = "USUBJID", visit = "AVISIT", group = "TRT", outcome = "CRIT1FLN", covariates = c("BASE", "STRATA", "REGION") )
ana_obj_prop <- analyse_mi_data( data = ADMI, vars = vars_binary, method = method, fun = gcomp_responder )
pool_obj_prop <- pool(ana_obj_prop) print(pool_obj_prop)
ADMI
object can be saved for later reuse.tidy_pool_obj()
is helpful for reporting and review.Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.