rdhte: RD Heterogeneous Treatment Effects Estimation and Inference

View source: R/rdhte.R

rdhteR Documentation

RD Heterogeneous Treatment Effects Estimation and Inference

Description

rdhte provides estimation and inference for heterogeneous treatment effects in RDD using local polynomial regression allowing for interactions with pretreatment covariates. Inference is implemented using robust bias-correction methods.

Companion commands: rdbwhte for data-driven bandwidth selection.

Related Stata and R packages useful for inference in RD designs are described in the website: https://rdpackages.github.io/.

Usage

rdhte(
  y,
  x,
  c = 0,
  covs.hte = NULL,
  covs.eff = NULL,
  p = 1,
  kernel = "tri",
  h = NULL,
  vce = "hc3",
  cluster = NULL,
  level = 95,
  bw.joint = FALSE
)

Arguments

y

Outcome variable.

x

Running variable.

c

Cutoff value (default = 0).

covs.hte

Covariate(s) for heterogeneous treatment effects (required).

covs.eff

Additional covariates for efficiency (optional).

p

Polynomial order (default = 1).

kernel

Kernel type (default = "tri").

h

Choice of bandwidth (optional).

vce

Variance estimator (default = "hc3").

cluster

Optional cluster variable.

level

Confidence level (default = 95).

bw.joint

Logical, use joint bandwidth selection (default = FALSE).

Value

A list with selected RD HTE effects and model information.

Estimate

vector of conventional local-polynomial RD estimates.

Estimate_bc

vector of bias-corrected local-polynomial RD estimates.

se_rb

vector containing robust bias corrected standard errors of the local-polynomial RD estimates.

ci_rb

matrix containing robust bias corrected confidence intervals.

t_rb

vector containing the t-statistics associated with robust local-polynomial RD estimates.

pv_rb

vector containing the p-values associated with robust local-polynomial RD estimates.

coefs

vector containing the coefficients for the jointly estimated p-th order local polynomial model.

vcov

estimated variance-covariance matrix.

W_lev

vector of group level identifiers.

kernel

kernel type used.

vce

variance estimator used.

c

cutoff value.

h

vector containing the bandwidths used.

p

order of the polynomial used for estimation of the regression function.

N

vector with the original number of observations for each group.

Nh

vector with the effective number of observations for each group.

coef_report

internal value.

level

confidence level used.

rdmodel

rd model.

Author(s)

Sebastian Calonico, University of California, Davis scalonico@ucdavis.edu.

Matias D. Cattaneo, Princeton University cattaneo@princeton.edu.

Max H. Farrell, University of California, Santa Barbara maxhfarrell@ucsb.edu.

Filippo Palomba, Princeton University fpalomba@princeton.edu.

Rocio Titiunik, Princeton University titiunik@princeton.edu.

References

Calonico, Cattaneo, Farrell, Palomba and Titiunik (2025): rdhte: Learning Conditional Average Treatment Effects in RD Designs. Working paper.

Calonico, Cattaneo, Farrell, Palomba and Titiunik (2025): Treatment Effect Heterogeneity in Regression Discontinuity Designs. Working paper

See Also

rdbwhte

Examples

set.seed(123)
n <- 5000
X <- runif(n, -1, 1)
W <- rbinom(n, 1, 0.5)
Y <- 3 + 2*X + 1.5*X^2 + 0.5*X^3 + sin(2*X) + 3*W*(X>=0) + rnorm(n)
rdhte.1 = rdhte(y=Y, x=X, covs.hte=factor(W))
summary(rdhte.1)

rdhte documentation built on April 12, 2025, 1:49 a.m.