Nothing
#' @title Safe Policy Learning for Regression Discontinuity Designs
#'
#' @description The \code{rdlearn} package provides tools for safe policy
#' learning under regression discontinuity designs with multiple cutoffs.
#'
#' @section Package Functions: The \code{rdlearn} package offers the following
#' main functions:
#'
#' \bold{Policy Learning}
#' \itemize{
#' \item \code{\link{rdlearn}}: Learn new treatment assignment cutoffs
#' }
#'
#' \bold{Visualization}
#' \itemize{
#' \item \code{\link{plot}}: Visualize the learned cutoffs
#' }
#'
#' \bold{Sensitivity Analysis}
#' \itemize{
#' \item \code{\link{sens}}: Perform sensitivity analysis
#' }
#'
#' \bold{RD Estimate}
#' \itemize{
#' \item \code{\link{rdestimate}}: Estimate RD treatment effects
#' }
#'
#' \bold{Summary}
#' \itemize{
#' \item \code{\link{summary}}: Summarize the result of \code{\link{rdlearn}} and \code{\link{rdestimate}}
#' }
#'
#' This package also contains the ACCES Program data \code{\link{acces}} for
#' replication of Section 6 of Zhang et al. (2022). We thank Tatiana Velasco
#' and her coauthors for sharing the dataset (Melguizo et al. (2016)).
#'
#' @references Zhang, Y., Ben-Michael, E. and Imai, K. (2022) 'Safe Policy
#' Learning under Regression Discontinuity Designs with Multiple Cutoffs',
#' arXiv [stat.ME]. Available at: \url{http://arxiv.org/abs/2208.13323}.
#'
#' Melguizo, F., Sanchez, F., and Velasco, T. (2016) 'Credit for Low Income
#' Students and Access to and Academic Performance in Higher Education in
#' Colombia: A Regression Discontinuity Approach', World Development, 80(1):
#' 61-77.
#'
#' @examples
#' # Simulation Data B from Appendix D of Zhang et al. (2022)
#' set.seed(1)
#' n <- 300
#' X <- runif(n, -1000, -1)
#' G <- 2 * as.numeric(
#' I(0.01 * X + 5 + rnorm(n, sd = 10) > 0)
#' ) +
#' as.numeric(
#' I(0.01 * X + 5 + rnorm(n, sd = 10) <= 0)
#' )
#' c1 <- -850
#' c0 <- -571
#' C <- ifelse(G == 1, c1, c0)
#' D <- as.numeric(X >= C)
#' coef0 <- c(-1.992230e+00, -1.004582e-02, -1.203897e-05, -4.587072e-09)
#' coef1 <- c(9.584361e-01, 5.308251e-04, 1.103375e-06, 1.146033e-09)
#' Px <- poly(X, degree = 3, raw = TRUE)
#' # Px = poly(X-735.4334-c1,degree=3,raw=TRUE) for Simulation A
#' Px <- cbind(rep(1, nrow(Px)), Px)
#' EY0 <- Px %*% coef0
#' EY1 <- Px %*% coef1
#' d <- 0.2 + exp(0.01 * X) * (1 - G) + 0.3 * (1 - D)
#' Y <- EY0 * (1 - D) + EY1 * D - d * as.numeric(I(G == 1)) + rnorm(n, sd = 0.3)
#'
#' simdata_B_demo <- data.frame(Y,X,C)
#'
#' # Learn new treatment assignment cutoffs
#' rdlearn_result <- rdlearn(
#' y = "Y", x = "X", c = "C", data = simdata_B_demo,
#' fold = 2, M = 0, cost = 0
#' )
#'
#' # Summarise the learned policies
#' summary(rdlearn_result)
#'
#' # Visualize the learned policies
#' plot(rdlearn_result, opt = "dif")
#' # The learned cutoff for Group 1 is the same as the baseline cutoff, because
#' # the baseline cutoff is set to equal to oracle cutoff in this simulation.
#'
#' # Implement sensitivity analysis
#' sens_result <- sens(rdlearn_result, M = 1, cost = 0)
#' plot(sens_result, opt = "dif")
#' @name package_rdlearn
#' @keywords internal
"_PACKAGE"
# The following block is used by usethis to automatically manage
# roxygen namespace tags. Modify with care!
## usethis namespace: start
#' @importFrom glue glue_collapse
## usethis namespace: end
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.