Nothing
#' Sensitivity Analysis for rdlearn Objects
#'
#' This function performs sensitivity analysis for the \code{rdlearn} object
#' under different smoothness multiplier (M) and the cost of treatment (cost).
#'
#' @param object An object of class \code{rdlearn} returned by the
#' \code{\link{rdlearn}} function.
#' @param M A numeric value or vector specifying the multiplicative smoothness
#' factor(s) for sensitivity analysis.
#' @param cost A numeric value or vector specifying the cost of treatment for
#' calculating regret.
#' @param trace A logical value that controls whether to display the progress of
#' cross-fitting and regret calculation. If set to TRUE, the progress will be
#' printed. The default value is TRUE.
#' @return An updated \code{rdlearn} object with the new cutoffs based on the
#' provided values of M and cost.
#' @inherit package_rdlearn examples
#'
#' @export
sens <- function(
object,
M = NULL,
cost = NULL,
trace = TRUE) {
# check arguments
if (missing(object) || !inherits(object, "rdlearn")) {
stop("'object' must be of class 'rdlearn'.")
}
if (missing(M)) {
stop("M is missing")
}
if (missing(cost)) {
stop("cost is missing")
}
if (length(M) > 1 && length(cost) > 1) {
stop("Both M and cost are vectors.")
}
new_result <- safelearn(
c.vec = object$org_cut,
n = object$sample,
q = object$num_group,
cost = cost,
M = M,
group_name_vec = object$group_name,
dif_lip_output = object$dif_lip_output,
cross_fit_output = object$cross_fit_output,
trace = trace
)
object$safe_cut <- new_result$safe_cut
object$dif_cut <- new_result$dif_cut
object$temp_reg_df <- new_result$temp_reg_df
object
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.