tests/testthat/_snaps/nice_table.md

nice_table

Code
  my_table
Output
  a flextable object.
  col_keys: `mpg`, `cyl`, `disp`, `hp`, `drat`, `wt`, `qsec`, `vs`, `am`, `gear`, `carb` 
  header has 3 row(s) 
  body has 3 row(s) 
  original dataset sample: 
                 mpg cyl disp  hp drat    wt  qsec vs am gear carb
  Mazda RX4     21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
  Mazda RX4 Wag 21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
  Datsun 710    22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
Code
  nice_table(stats.table, highlight = TRUE)
Output
  a flextable object.
  col_keys: `Term`, `B`, `SE`, `t`, `p`, `95% CI` 
  header has 1 row(s) 
  body has 5 row(s) 
  original dataset sample: 
                     Term          B         SE          t            p
  (Intercept) (Intercept) -0.1835269 0.08532112 -2.1510135 4.058431e-02
  cyl                 cyl -0.1082286 0.15071576 -0.7180977 4.788652e-01
  wt                   wt -0.6230206 0.10927573 -5.7013627 4.663587e-06
  hp                   hp -0.2874898 0.11955935 -2.4045781 2.331865e-02
  wt:hp           wt × hp  0.2875867 0.08895462  3.2329593 3.221753e-03
                      95% CI signif
  (Intercept) [-0.36, -0.01]   TRUE
  cyl          [-0.42, 0.20]  FALSE
  wt          [-0.85, -0.40]   TRUE
  hp          [-0.53, -0.04]   TRUE
  wt:hp         [0.11, 0.47]   TRUE
Code
  nice_table(test)
Output
  a flextable object.
  col_keys: `dR`, `N`, `M`, `SD`, `b`, `np2`, `ges`, `p`, `r`, `R2`, `sr2` 
  header has 1 row(s) 
  body has 6 row(s) 
  original dataset sample: 
                      dR N   M  SD    b   np2   ges p r  R2 sr2
  Mazda RX4         21.0 6 160 110 3.90 2.620 16.46 0 1 0.4 0.4
  Mazda RX4 Wag     21.0 6 160 110 3.90 2.875 17.02 0 1 0.4 0.4
  Datsun 710        22.8 4 108  93 3.85 2.320 18.61 1 1 0.4 0.1
  Hornet 4 Drive    21.4 6 258 110 3.08 3.215 19.44 1 0 0.3 0.1
  Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 0.3 0.2
Code
  nice_table(test[8:11], col.format.p = 2:4, highlight = 0.001)
Output
  a flextable object.
  col_keys: `p`, `r`, `R2`, `sr2` 
  header has 1 row(s) 
  body has 6 row(s) 
  original dataset sample: 
                    p r  R2 sr2 signif
  Mazda RX4         0 1 0.4 0.4   TRUE
  Mazda RX4 Wag     0 1 0.4 0.4   TRUE
  Datsun 710        1 1 0.4 0.1  FALSE
  Hornet 4 Drive    1 0 0.3 0.1  FALSE
  Hornet Sportabout 0 0 0.3 0.2   TRUE
Code
  nice_table(test[8:11], col.format.r = 1:4)
Output
  a flextable object.
  col_keys: `p`, `r`, `R2`, `sr2` 
  header has 1 row(s) 
  body has 6 row(s) 
  original dataset sample: 
                    p r  R2 sr2
  Mazda RX4         0 1 0.4 0.4
  Mazda RX4 Wag     0 1 0.4 0.4
  Datsun 710        1 1 0.4 0.1
  Hornet 4 Drive    1 0 0.3 0.1
  Hornet Sportabout 0 0 0.3 0.2
Code
  nice_table(test[8:11], col.format.custom = 2:4, format.custom = "fun")
Output
  a flextable object.
  col_keys: `p`, `r`, `R2`, `sr2` 
  header has 1 row(s) 
  body has 6 row(s) 
  original dataset sample: 
                    p r  R2 sr2
  Mazda RX4         0 1 0.4 0.4
  Mazda RX4 Wag     0 1 0.4 0.4
  Datsun 710        1 1 0.4 0.1
  Hornet 4 Drive    1 0 0.3 0.1
  Hornet Sportabout 0 0 0.3 0.2
Code
  nice_table(test[8:11], col.format.custom = 2:4, format.custom = "fun")
Output
  a flextable object.
  col_keys: `p`, `r`, `R2`, `sr2` 
  header has 1 row(s) 
  body has 6 row(s) 
  original dataset sample: 
                    p r  R2 sr2
  Mazda RX4         0 1 0.4 0.4
  Mazda RX4 Wag     0 1 0.4 0.4
  Datsun 710        1 1 0.4 0.1
  Hornet 4 Drive    1 0 0.3 0.1
  Hornet Sportabout 0 0 0.3 0.2
Code
  nice_table(header.data, separate.header = TRUE, italics = 2:4)
Output
  a flextable object.
  col_keys: `Variable`, `setosa.M`, `setosa.SD`, `versicolor.M`, `versicolor.SD` 
  header has 2 row(s) 
  body has 3 row(s) 
  original dataset sample: 
        Variable setosa.M setosa.SD versicolor.M versicolor.SD
  1 Sepal.Length     5.01      0.35         5.94          0.52
  2  Sepal.Width     3.43      0.38         2.77          0.31
  3 Petal.Length     1.46      0.17         4.26          0.47


Try the rempsyc package in your browser

Any scripts or data that you put into this service are public.

rempsyc documentation built on July 3, 2024, 5:08 p.m.