Nothing
#' \pkg{resde} - Parameter estimation in reducible SDE models.
#'
#' @description The main functions for model fitting are \code{\link{sdemodel}()}
#' and \code{\link{sdefit}()}. First, specify the model structure in
#' \code{sdemodel()}, including the variable transformation, any
#' re-parameterizations, initial condition, and the presence or not of process,
#' measurement, and initial condition noise. Then, fit the model with
#' \code{sdefit()}, indicating the data to be used and starting parameter
#' values for the iterations. For hierarchical models, one must also
#' indicate which are the global and local parameters, and if fixed
#' locals or a mixed effects method should be used.
#'
#' Some auxilliary functions include the Box-Cox transformation \code{\link{bc}()},
#' and the \emph{unified transformation} \code{\link{unitran}()}.
#'
#' For detailed usage see the vignette: \code{vignette("resde-vignette", package="resde")}.
#'
#' @examples
#' # Richards model dH^c = b(a^c - H^c) dt + s dW for tree heights
#' tree1 <- subset(Loblolly, Seed == Seed[1]) # first tree
#' m <- sdemodel(~x^c, beta0=~b*a^c, beta1=~-b, mum=0) # no measurement error
#' sdefit(m, x="height", t="age", data=tree1, start=c(a=70, b=0.1, c=0.5))
#'
#' @references Garcia, O. (2019) "Estimating reducible stochastic differential
#' equations by conversion to a least-squares problem". \emph{Computational
#' Statistics 34}(1), 23-46. \doi{10.1007/s00180-018-0837-4}
# @keywords internal
"_PACKAGE"
## usethis namespace: start
## usethis namespace: end
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.