tests/testthat/test-test_plot.reslr_output.R

# #co <- function(expr) capture.output(expr, file = "NUL")
#
# # Testing all loading options for plotting functions for 1 site
# data("NAACproxydata")
# data <- NAACproxydata %>% dplyr::filter(Site == "Cedar Island")
# reslr_input_1 <- reslr_load(
#   data = data,
#   prediction_grid_res = 100,
#   include_tide_gauge = FALSE,
#   TG_minimum_dist_proxy = FALSE,
#   input_age_type = "CE"
# )
#
#
# testthat::test_that("Basic reslr_output plot for SLR", {
#   # Testing EIV SLR
#   jags_output_slr <- reslr_mcmc(
#     input_data = reslr_input_1,
#     model_type = "eiv_slr_t",
#     n_iterations = 10,
#     n_burnin = 1,
#     n_thin = 1,
#     n_chains = 1
#   )
#   p1 <- plot(jags_output_slr)
#   testthat::expect_true(is.list(p1))
# })
#
#
#
# testthat::test_that("Basic reslr_output plot for EIV cp 1", {
#   # Testing EIV CP 1
#   jags_output_cp1 <- reslr_mcmc(
#     input_data = reslr_input_1,
#     model_type = "eiv_cp_t",
#     n_iterations = 10,
#     n_burnin = 1,
#     n_thin = 1,
#     n_chains = 1
#   )
#   p2 <- plot(jags_output_cp1)
#   testthat::expect_true(is.list(p2))
# })
#
#
# testthat::test_that("Basic reslr_output plot for EIV cp 2", {
#   # Testing EIV CP 2
#   jags_output_cp2 <- reslr_mcmc(
#     input_data = reslr_input_1,
#     model_type = "eiv_cp_t",
#     n_cp = 2,
#     n_iterations = 10,
#     n_burnin = 1,
#     n_thin = 1,
#     n_chains = 1
#   )
#   p3 <- plot(jags_output_cp2)
#   testthat::expect_true(is.list(p3))
# })
#
#
# testthat::test_that("Basic reslr_output plot for EIV IGP", {
#   # Testing EIV IGP
#   jags_output_igp <- reslr_mcmc(
#     input_data = reslr_input_1,
#     model_type = "eiv_igp_t",
#     n_iterations = 10,
#     n_burnin = 1,
#     n_thin = 1,
#     n_chains = 1
#   )
#   p4 <- plot(jags_output_igp)
#   testthat::expect_true(is.list(p4))
# })
#
# testthat::test_that("Basic reslr_output plot for NI spline in t", {
#   # Testing NI spline t
#   jags_output_nisplinet <- reslr_mcmc(
#     input_data = reslr_input_1,
#     model_type = "ni_spline_t",
#     n_iterations = 10,
#     n_burnin = 1,
#     n_thin = 1,
#     n_chains = 1
#   )
#   p5 <- plot(jags_output_nisplinet)
#   testthat::expect_true(is.list(p5))
# })
#
#
# # # Testing plotting functions for multiple sites
# # testthat::test_that("Basic plot for multiple sites", {
# #   multidata <- NAACproxydata %>% dplyr::filter(Site %in% c("Cedar Island", "Barn Island", "Nassau"))
# #   reslr_input_3 <- reslr_load(
# #     data = multidata,
# #     prediction_grid_res = 100,
# #     include_tide_gauge = FALSE,
# #     include_linear_rate = FALSE,
# #     input_age_type = "CE"
# #   )
# #   # Testing NI spline st
# #   jags_output_nisplinest <- reslr_mcmc(
# #     input_data = reslr_input_3,
# #     model_type = "ni_spline_st",
# #     n_iterations = 10,
# #     n_burnin = 1,
# #     n_thin = 1,
# #     n_chains = 1
# #   )
# #   p6 <- plot(jags_output_nisplinest)
# #   testthat::expect_true(is.list(p6))
# # })
#
# # # Testing plotting functions for multiple sites and tide gauges
# # testthat::test_that("Basic plot for multiple sites and tide gauges", {
# #   multidata <- NAACproxydata %>% dplyr::filter(Site %in% c("Cedar Island", "Barn Island", "Nassau"))
# #   reslr_input_4 <- reslr_load(
# #     data = multidata,
# #     prediction_grid_res = 100,
# #     include_tide_gauge = TRUE,
# #     include_linear_rate = FALSE,
# #     TG_minimum_dist_proxy = TRUE,
# #     input_age_type = "CE"
# #   )
# #   # Testing NI gam
# #   jags_output_nisplinest <- reslr_mcmc(
# #     input_data = reslr_input_4,
# #     model_type = "ni_gam_decomp",
# #     n_iterations = 10,
# #     n_burnin = 1,
# #     n_thin = 1,
# #     n_chains = 1
# #   )
# #   p7 <- plot(jags_output_nisplinest)
# #   testthat::expect_true(is.list(p7))
# # })

Try the reslr package in your browser

Any scripts or data that you put into this service are public.

reslr documentation built on July 9, 2023, 7:54 p.m.