View source: R/set_max_mesh_objective.R
set_max_mesh_objective | R Documentation |
Specify that a restoration problem (restopt_problem()
) should
maximize effective mesh size.
set_max_mesh_objective(problem)
problem |
|
The effective mesh size (MESH) is a measure of landscape fragmentation based on the probability that two randomly chosen points are located in the same patch (Jaeger, 2000). Maximizing it in the context of restoration favours fewer and larger patches.
An updated restoration problem (restopt_problem()
) object.
Jaeger, J. A. G. (2000). Landscape division, splitting index, and effective mesh size: New measures of landscape fragmentation. Landscape Ecology, 15(2), 115‑130. https://doi.org/10.1023/A:1008129329289
Other objectives:
set_max_iic_objective()
,
set_max_nb_pus_objective()
,
set_max_restore_objective()
,
set_min_nb_patches_objective()
,
set_min_nb_pus_objective()
,
set_min_restore_objective()
,
set_no_objective()
## Not run:
# load data
habitat_data <- rast(
system.file("extdata", "habitat_hi_res.tif", package = "restoptr")
)
locked_out_data <- rast(
system.file("extdata", "locked_out.tif", package = "restoptr")
)
# plot data
plot(rast(list(habitat_data, locked_out_data)), nc = 2)
# create problem with locked out constraints
p <- restopt_problem(
existing_habitat = habitat_data,
aggregation_factor = 16,
habitat_threshold = 0.7
) %>%
set_max_mesh_objective() %>%
add_restorable_constraint(
min_restore = 5,
max_restore = 5,
) %>%
add_locked_out_constraint(data = locked_out_data) %>%
add_settings(time_limit = 1)
# print problem
print(p)
# solve problem
s <- solve(p)
# plot solution
plot(s)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.