Nothing
## ----include = FALSE----------------------------------------------------------
library(rgeedim)
knitr::opts_chunk$set(
eval = FALSE,
collapse = TRUE,
fig.width = 8,
fig.align = 'center',
comment = "#>"
)
## ----libr---------------------------------------------------------------------
# library(rgeedim)
## ----setup--------------------------------------------------------------------
# gd_initialize()
## ----bbox---------------------------------------------------------------------
# r <- gd_bbox(
# xmin = -121,
# xmax = -120.5,
# ymin = 38.5,
# ymax = 39
# )
## ----image-from-id------------------------------------------------------------
# x <- gd_image_from_id('CSP/ERGo/1_0/Global/SRTM_topoDiversity')
## ----download-----------------------------------------------------------------
# img <- gd_download(x, filename = 'image.tif',
# region = r, scale = 900,
# overwrite = TRUE, silent = FALSE
# )
## ----terrarast, fig.align='center', fig.width=4-------------------------------
# library(terra)
# f <- rast(img)
## ----inspect------------------------------------------------------------------
# par(mar = c(1, 1, 1, 1))
# plot(f[[1]])
#
# # inspect object
# f
## ----dem10-hillshade----------------------------------------------------------
# library(rgeedim)
# library(terra)
#
# gd_initialize()
#
# b <- gd_bbox(
# xmin = -120.296,
# xmax = -120.227,
# ymin = 37.9824,
# ymax = 38.0071
# )
#
# ## hillshade example
# # download 10m NED DEM in AEA
# x <- "USGS/NED" |>
# gd_image_from_id() |>
# gd_download(
# region = b,
# scale = 10,
# crs = "EPSG:5070",
# resampling = "bilinear",
# filename = "image.tif",
# bands = list("elevation"),
# overwrite = TRUE,
# silent = FALSE
# )
# dem <- rast(x)$elevation
#
# # calculate slope, aspect, and hillshade with terra
# slp <- terrain(dem, "slope", unit = "radians")
# asp <- terrain(dem, "aspect", unit = "radians")
# hsd <- shade(slp, asp)
#
# # compare elevation v.s. hillshade
# plot(c(dem, hillshade = hsd))
## ----lidar-composite----------------------------------------------------------
# # search and download composite from USGS 1m lidar data collection
# library(rgeedim)
# library(terra)
#
# gd_initialize()
#
# # wkt->SpatVector->GeoJSON
# b <- 'POLYGON((-121.355 37.56,-121.355 37.555,
# -121.35 37.555,-121.35 37.56,
# -121.355 37.56))' |>
# vect(crs = "OGC:CRS84")
#
# # create a GeoJSON-like list from a SpatVector object
# # (most rgeedim functions arguments for spatial inputs do this automatically)
# r <- gd_region(b)
#
# # search collection for an area of interest
# a <- "USGS/3DEP/1m" |>
# gd_collection_from_name() |>
# gd_search(region = r)
#
# # inspect individual image metadata in the collection
# gd_properties(a)
#
# # resampling images as part of composite; before download
# x <- a |>
# gd_composite(resampling = "bilinear") |>
# gd_download(region = r,
# crs = "EPSG:5070",
# scale = 1,
# filename = "image.tif",
# overwrite = TRUE,
# silent = FALSE) |>
# rast()
#
# # inspect
# plot(terra::terrain(x$elevation))
# plot(project(b, x), add = TRUE)
## ----daymet-nocomposite-------------------------------------------------------
# # search and download individual images from daymet V4
# library(rgeedim)
# library(terra)
#
# gd_initialize()
#
# r <- gd_bbox(
# xmin = -121,
# xmax = -120.5,
# ymin = 38.5,
# ymax = 39
# )
#
# # search collection for spatial and date range (one week in January 2020)
# gd_collection_from_name('NASA/ORNL/DAYMET_V4') |>
# gd_search(region = r,
# start_date = "2020-01-21",
# end_date = "2020-01-27") -> res
#
# # get table of IDs and dates
# p <- gd_properties(res)
# td <- file.path(tempdir(), "DAYMET_V4")
#
# # create a new collection using gd_collection_from_list()
# # download each image as separate GeoTIFF (no compositing)
# # Note: `filename` is a directory
# gd_collection_from_list(p$id) |>
# gd_download(
# filename = td,
# composite = FALSE,
# dtype = 'int16',
# region = r,
# bands = list("prcp"),
# crs = "EPSG:5070",
# scale = 1000
# ) |>
# rast() -> x2
#
# # filter to bands of interest (if neeeded)
# x2 <- x2[[names(x2) == "prcp"]]
#
# # set time for each layer
# time(x2) <- p$date
# panel(x2)
# title(ylab = "Daily Precipitation (mm)")
## ----include=FALSE------------------------------------------------------------
# unlink("image.tif")
# unlink(td, recursive = TRUE)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.