| kernel_knn_weights | R Documentation | 
Create a kernel weights by specifying k-nearest neighbors and a kernel method
kernel_knn_weights(
  sf_obj,
  k,
  kernel_method,
  adaptive_bandwidth = TRUE,
  use_kernel_diagonals = FALSE,
  power = 1,
  is_inverse = FALSE,
  is_arc = FALSE,
  is_mile = TRUE
)
sf_obj | 
 An sf (simple feature) object  | 
k | 
 a positive integer number for k-nearest neighbors  | 
kernel_method | 
 a string value, which has to be one of 'triangular', 'uniform', 'epanechnikov', 'quartic', 'gaussian'  | 
adaptive_bandwidth | 
 (optional) TRUE (default) or FALSE: TRUE use adaptive bandwidth calculated using distance of k-nearest neithbors, FALSE use max distance of all observation to their k-nearest neighbors  | 
use_kernel_diagonals | 
 (optional) FALSE (default) or TRUE, apply kernel on the diagonal of weights matrix  | 
power | 
 (optional) The power (or exponent) of a number says how many times to use the number in a multiplication.  | 
is_inverse | 
 (optional) FALSE (default) or TRUE, apply inverse on distance value  | 
is_arc | 
 (optional) FALSE (default) or TRUE, compute arc distance between two observations  | 
is_mile | 
 (optional) TRUE (default) or FALSE, convert distance unit from mile to km.  | 
An instance of Weight-class
library(sf)
guerry_path <- system.file("extdata", "Guerry.shp", package = "rgeoda")
guerry <- st_read(guerry_path)
adptkernel_w = kernel_knn_weights(guerry, 6, "uniform")
summary(adptkernel_w)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.