Nothing
#' @title _Aedes aegypti_ occurrences in Brazil in 2013
#'
#' @description A geographic dataset of known occurrences of _Aedes aegypti_
#' mosquitoes in Brazil, derived from peer-reviewed and unpublished literature
#' and reverse-geocoded to states.
#'
#' @format A [tibble][tibble::tibble] of 4411 observations and 13 variables:
#' \describe{
#' \item{vector}{species identification (_aegypti_ versus _albopictus_)}
#' \item{occurrence_id}{unique occurrence identifier}
#' \item{source_type}{published versus unpublished, with reference identifier}
#' \item{location_type}{point or polygon location}
#' \item{polygon_admin}{admin level or polygon size; -999 for point locations}
#' \item{y}{latitudinal coordinate of point or polygon centroid}
#' \item{x}{longitudinal coordinate of point or polygon centroid}
#' \item{status}{established versus transient population}
#' \item{state_name}{name of reverse-geolocated state}
#' \item{state_code}{two-letter state code}
#' }
#'
#' @source \doi{10.5061/dryad.47v3c}
#' @examples
#'
#' # calculate persistence data for occurrences in Acre
#' acre_coord <- aegypti[aegypti$state_code == "AC", c("x", "y"), drop = FALSE]
#' acre_rips <- vietoris_rips(acre_coord)
#' plot.new()
#' xymax <- max(setdiff(acre_rips$death, Inf))
#' plot.window(
#' xlim = c(0, xymax),
#' ylim = c(0, xymax),
#' asp = 1
#' )
#' axis(1L)
#' axis(2L)
#' abline(a = 0, b = 1)
#' points(acre_rips[acre_rips$dim == 0L, c("birth", "death")], pch = 16L)
#' points(acre_rips[acre_rips$dim == 1L, c("birth", "death")], pch = 17L)
"aegypti"
#' @title State-level predictors of mosquito-borne illness in Brazil
#'
#' @description A data set of numbers of cases of Dengue in each state of Brazil
#' in 2013 and three state-level variables used in a predictive model.
#'
#' @format A data frame of 27 observations and 4 variables:
#' \describe{
#' \item{POP}{state population in 2013}
#' \item{TEMP}{average temperature across state municipalities}
#' \item{PRECIP}{average precipitation across state municipalities}
#' \item{CASE}{number of state Dengue cases in 2013}
#' }
#'
#' @source
#' \url{https://web.archive.org/web/20210209122713/https://www.gov.br/saude/pt-br/assuntos/boletins-epidemiologicos-1/por-assunto},
#' \url{http://www.ipeadata.gov.br/Default.aspx},
#' \url{https://ftp.ibge.gov.br/Estimativas_de_Populacao/},
#' `https://www.ibge.Goiasv.br/geociencias/organizacao-do-territorio/estrutura-territorial/15761-areas-dos-municipios.html?edicao=30133&t=acesso-ao-produto`
#'
#' \describe{
#' Data pre-processing:
#' After acquiring data from above links, we converted any dataset
#' embedded in PDF format to CSV. Using carried functionalities in the CSV
#' file, we sorted all datasets alphabetically based on state names to make
#' later iterations more convenient. Also, we calculated the annual average
#' temperature and added to the original dataset where it was documented by
#' quarter.
#' }
"case_predictors"
#' @title Images of black holes: Sagettarius A* and Pōwehi
#'
#' @name blackholes
#' @aliases sagAstar powehi
#'
#' @description These data sets contain grayscale bitmaps of black holes
#' Sagettarius A* and Pōwehi (the unoffical name of Messier 87's black hole).
#' `sagAstar` contains a 240x240 matrix with a spatial scale of approximately 1.3 millon
#' km per cell (calculated by dividing the length of the shadow by the number of
#' cells it covers in the image: 50 million km / 38).
#' `powehi` contains a 250x250 matrix of Pōwehi with a spatial scale of
#' approximately 800 million km per cell (calculated the same way as above:
#' 40 billion km / 50).
#'
#' @format A 240x240 and 250x250 matrix containing cells evaluated between 0 and 1.
#'
#' @source
#' \url{https://commons.wikimedia.org/wiki/File:Black_hole_-_Messier_87_crop_max_res.jpg}
#' \url{https://commons.wikimedia.org/wiki/File:EHT_Saggitarius_A_black_hole.tif}
#' \url{https://mtsch.github.io/Ripserer.jl/v0.10/generated/sublevelset/}
#'
#' **Image Processing Details**
#'
#' For both images we used the same proccess as follows.
#' First, we obtained our images from \href{https://commons.wikimedia.org/wiki/File:EHT_Saggitarius_A_black_hole.tif}{Wikimedia Commons: Sagittarius A*}
#' \href{https://commons.wikimedia.org/wiki/File:Black_hole_-_Messier_87_crop_max_res.jpg}{Wikimedia Commons: Pōwehi}.
#' We then utilize \pkg{magick} to
#' convert the images from RGB to grayscale using the default
#' "perceptually-weighted" conversion. Next we acquired the raw 3D arrays,
#' converted the data type to numerical, and dropped the singleton channel
#' dimension. We then transposed the matrices and vertically flipped it to align
#' with how \pkg{graphics} reads matrices.
#'
#'
#' @examples
#' image(powehi,
#' col = hcl.colors(256, palette = "inferno", alpha = NULL, rev = FALSE,
#' fixup = TRUE), axes = FALSE, asp = 1)
#' title(main = "Messier 87's Black Hole: Powehi")
#'
#' # based on the image, we expect one especially prominent
#' # persistent feature in 1D
#' ph <- cubical(powehi)
#'
#' plot.new()
#' plot.window(
#' xlim = c(0, max(ph$death)),
#' ylim = c(0, max(ph$death)),
#' asp = 1
#' )
#' axis(1L)
#' axis(2L)
#' abline(a = 0, b = 1)
#' points(ph[ph$dim == 1L, c("birth", "death")], pch = 17L, col = "orange")
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.