Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----include=FALSE------------------------------------------------------------
library(rix)
## ----eval = FALSE-------------------------------------------------------------
# library(rix)
#
# rix(
# r_ver = "4.3.1",
# r_pkgs = c("dplyr", "ggplot2"),
# ide = "none",
# project_path = ".",
# overwrite = TRUE
# )
## ----eval = FALSE-------------------------------------------------------------
# library(rix)
#
# rix(
# r_ver = "4.2.2",
# r_pkgs = "shiny",
# ide = "none",
# project_path = ".",
# overwrite = TRUE
# )
## ----eval = FALSE-------------------------------------------------------------
# # k-means only works with numerical variables,
# # so don't give the user the option to select
# # a categorical variable
# vars <- setdiff(names(iris), "Species")
#
# pageWithSidebar(
# headerPanel("Iris k-means clustering"),
# sidebarPanel(
# selectInput("xcol", "X Variable", vars),
# selectInput("ycol", "Y Variable", vars, selected = vars[[2]]),
# numericInput("clusters", "Cluster count", 3, min = 1, max = 9)
# ),
# mainPanel(
# plotOutput("plot1")
# )
# )
## ----eval = FALSE-------------------------------------------------------------
# function(input, output, session) {
# # Combine the selected variables into a new data frame
# selectedData <- reactive({
# iris[, c(input$xcol, input$ycol)]
# })
#
# clusters <- reactive({
# kmeans(selectedData(), input$clusters)
# })
#
# output$plot1 <- renderPlot({
# palette(c(
# "#E41A1C", "#377EB8", "#4DAF4A", "#984EA3",
# "#FF7F00", "#FFFF33", "#A65628", "#F781BF", "#999999"
# ))
#
# par(mar = c(5.1, 4.1, 0, 1))
# plot(selectedData(),
# col = clusters()$cluster,
# pch = 20, cex = 3
# )
# points(clusters()$centers, pch = 4, cex = 4, lwd = 4)
# })
# }
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.