View source: R/spec_regarima.R
| set_outlier | R Documentation |
Function allowing to customize the automatic outlier detection process built in in the pre-processing step (regarima or tramo).
set_outlier(
x,
span.type = c(NA, "All", "From", "To", "Between", "Last", "First", "Excluding"),
d0 = NULL,
d1 = NULL,
n0 = 0,
n1 = 0,
outliers.type = NA,
critical.value = NA,
tc.rate = NA,
method = c(NA, "AddOne", "AddAll"),
maxiter = NA,
lsrun = NA,
eml.est = NA
)
x |
the specification to customize, must be a "SPEC" class object (see details). |
span.type, d0, d1, n0, n1 |
parameters to specify the sub-span on which outliers will be detected.
|
outliers.type |
vector of characters of the outliers to be automatically detected.
|
critical.value |
|
tc.rate |
the rate of decay for the transitory change outlier. (Default = 0.7). |
method |
(REGARIMA/X13 Specific) determines how the program successively
adds detected outliers to the model.
Currently, only the |
maxiter |
(REGARIMA/X13 Specific) maximum number of iterations (Default = 30). |
lsrun |
(REGARIMA/X13 Specific) number of successive level shifts to test for cancellation (Default = 0). |
eml.est |
(TRAMO Specific) |
x specification parameter must be a JD3_X13_SPEC" class object
generated with rjd3x13::x13_spec() (or "JD3_REGARIMA_SPEC" generated
with rjd3x13::spec_regarima() or "JD3_TRAMOSEATS_SPEC" generated with
rjd3tramoseats::spec_tramoseats() or "JD3_TRAMO_SPEC" generated with
rjd3tramoseats::spec_tramo()).
If a Seasonal adjustment process is performed, each type of Outlier will be allocated to a pre-defined component after the decomposition: "AO" and "TC" to the irregular, "LS" to the trend and "SO" to seasonal component.
The modified specification (with new outlier parameters)
More information on outliers and other auxiliary variables in JDemetra+ online documentation: https://jdemetra-new-documentation.netlify.app/
add_outlier, add_usrdefvar
# Customize a default specification
init_spec <- tramoseats_spec_default
new_spec <- set_outlier(
x = init_spec,
span.type = "From",
d0 = "2012-01-01",
outliers.type = c("LS", "AO"),
critical.value = 5,
tc.rate = 0.85
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.