rlcv | R Documentation |
Robust likelihood cross validation bandwidth for univariate densities
rlcv(x.obs, x.new = NULL)
x.obs |
Training (observed) data |
x.new |
Evaluation data; default to x.obs |
fhat: density evaluated at x.new; h: bandwidth
Ximing Wu xwu@tamu.edu
Wu, Ximing (2019), "Robust Likelihood Cross Validation for Kernel Density Estimation," Journal of Business and Economic Statistics, 37(4): 761-770.
x=rt(200,df=5) x.new=seq(-5,5,length=100) fit=rlcv(x.obs=x,x.new=x.new) # Mean squared errors f0=dt(x.new,df=5) mean((f0-fit$fhat)^2) matplot(x.new,cbind(f0,fit$fhat),type='l')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.