sa_fri1 | R Documentation |
5 Synthetic regression (sa_fri1, sa_ssin, sa_psin, sa_int2, sa_tree) and 4 classification (sa_ssin_2, sa_ssin_n2p, sa_int2_3c, sa_int2_8p) datasets for measuring input importance of supervised learning models
data(sa_fri1)
A data frame with 1000 observations on the following variables.
x
ninput (numeric or factor, depends on the dataset)
y
output target (numeric or factor, depends on the dataset)
Check reference or source for full details
See references
To cite the Importance function, sensitivity analysis methods or synthetic datasets, please use:
P. Cortez and M.J. Embrechts.
Using Sensitivity Analysis and Visualization Techniques to Open Black Box Data Mining Models.
In Information Sciences, Elsevier, 225:1-17, March 2013.
\Sexpr[results=rd]{tools:::Rd_expr_doi("10.1016/j.ins.2012.10.039")}
data(sa_ssin)
print(summary(sa_ssin))
## Not run: plot(sa_ssin$x1,sa_ssin$y)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.