View source: R/Robust_Stepwise_Split.R
robustStepwiseSplit | R Documentation |
Internal function that performs robust stepwise variable selection for building disjoint ensemble models. Uses robust correlation estimates to select predictor subsets while ensuring variables are not shared across models.
robustStepwiseSplit(
Rx,
Ry,
n_models = 1,
model_saturation = "p-value",
alpha = 0.05,
model_size = NULL,
n = nrow(Rx)
)
Rx |
Robust correlation matrix of predictors (p x p matrix). |
Ry |
Robust correlation vector between response and predictors (p x 1 vector). |
n_models |
Number of models to build. Default is 1. |
model_saturation |
Criterion to determine model saturation. Either "p-value" or "fixed". Default is "p-value". |
alpha |
P-value threshold for determining model saturation when model_saturation = "p-value". Default is 0.05. |
model_size |
Maximum number of variables per model when model_saturation = "fixed". Default is NULL. |
n |
Sample size used for computing test statistics. Default is nrow(Rx). |
If n_models = 1, returns a vector of 0-indexed selected variable indices. If n_models > 1, returns a list where each element contains the 0-indexed selected variable indices for the corresponding model.
Anthony-Alexander Christidis, anthony.christidis@stat.ubc.ca
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.