Nothing
#' simulated data for demonstrating the features of roben
#'
#' Simulated gene expression data for demonstrating the features of roben.
#'
#' @docType data
#' @keywords datasets
#' @name data
#' @aliases GxE_small GxE_large X Y E clin coeff X2 Y2 E2 clin2 coeff2
#' @usage data("GxE_small")
#' data("GxE_large")
#' @format GxE_small consists of five components: X, Y, E, clin and coeff. coeff contains the true values of parameters used for generating Y.
#'
#' GxE_large contains larger datasets: X2, Y2, E2 and clin2
#'
#' @details
#'
#' \strong{The data model for generating Y}
#'
#' Use subscript \eqn{i} to denote the \eqn{i}th subject. Let \eqn{(X_{i}, Y_{i}, E_{i}, Clin_{i})}, (\eqn{i=1,\ldots,n}) be
#' independent and identically distributed random vectors. \eqn{Y_{i}} is a continuous response variable representing the
#' disease phenotype. \eqn{X_{i}} is the \eqn{p}--dimensional vector of G factors. The environmental factors and clinical covariates
#' are denoted as the \eqn{k}-dimensional vector \eqn{E_{i}} and the \eqn{q}-dimensional vector \eqn{Clin_{i}}, respectively.
#' The \eqn{\epsilon} follows some heavy-tailed distribution.
#' Considering the following model:
#'
#' \deqn{Y_{i} = \alpha_{0} + \sum_{t=1}^{q}\alpha_{t}Clin_{it} + \sum_{m=1}^{k}\theta_{m}E_{im} + \sum_{j=1}^{p}\gamma_{j}X_{ij} + \sum_{j=1}^{p}\sum_{m=1}^{k}\zeta_{jm}E_{im}X_{ij} +\epsilon_{i},}
#' where \eqn{\alpha_{0}} is the intercept; \eqn{\alpha_{t}}'s, \eqn{\theta_{m}}'s, \eqn{\gamma_{j}}'s and \eqn{\zeta_{jm}}'s are
#' the regression coefficients for the clinical covariates, environmental factors, genetic factors and G\eqn{\times}E interactions, respectively.
#'
#' Define \eqn{\beta_{j}=(\gamma_{j}, \zeta_{j1},\ldots,\zeta_{jk})^\top \equiv (\beta_{j1},\ldots,\beta_{jL})^\top} and
#' \eqn{U_{ij}=(X_{ij},X_{ij}E_{i1}\ldots,X_{ij}E_{ik})^\top \equiv (U_{ij1},\dots,U_{ijL})^\top}, where \eqn{L=k+1}.
#' The model can be written as
#' \deqn{Y_{i} = \alpha_{0} + \sum_{t=1}^{q}\alpha_{t}Clin_{it} + \sum_{m=1}^{k}\theta_{m}E_{im} + \sum_{j=1}^{p} \big(U_{ij}^\top\beta_{j}\big) +\epsilon_{i},}
#' where the coefficient vector \eqn{\beta_{j}} represents all the main and interaction effects corresponding to the \eqn{j}th genetic measurement.
#'
#' The object \strong{coeff} in GxE_small is a list of four components, corresponding to \eqn{\alpha_{0}}, \eqn{\alpha_{t}}'s, \eqn{\theta_{m}}'s and \eqn{\beta_{j}}'s.
#'
#'
#' @examples
#' data(GxE_small)
#' dim(X)
#' print(coeff)
#'
#' data(GxE_large)
#' dim(X)
#' print(coeff)
#'
#' @seealso \code{\link{roben}}
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.