Description Usage Arguments Value References See Also Examples
Generate synthetic data as in the simulation study of Centofanti et al. (2021) with the addition of the case of bi-variate functional data. All the details are in Centofanti et al. (2021).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
scenario |
A character strings indicating the scenario considered. It could be "one-way", "two-way", "one-way surface" and "two-way surface". |
mean |
A character strings indicating the type of mean function in one-way ANOVA. It could be "M1", "M2", and "M3". |
con |
A character strings indicating the type of contamination function. It could be "C0", for no contamination, "C1", "C2", "C3", "C4", "C5", and "C6". |
p |
The parameter related to the bernoulli variable in the contamination function. |
M |
The contamination size constant. |
n_i |
The number of observation for each group. |
k_1 |
The number of level for the first main effect. |
k_2 |
The number of level for the second main effect. For One-way ANOVA, it is ignored. |
alpha |
The parameter a in the Two-way ANOVA scenarios. For One-way ANOVA, it is ignored. |
beta |
The parameter b in the Two-way ANOVA scenarios. For One-way ANOVA, it is ignored. |
sd |
The sigma parameter in the covariance of the error function. |
grid |
The grid over which the functional data are observed. |
err |
The direction of the dependence in the error function for the case of bi-variate functional data. It could be either "s", for dependence along the first dimension or "t" for dependence along the second dimension. |
A list containing the following arguments:
X_fdata
: The generated functional data.
label_1
: The vector of containing group label corresponding to the first main effect.
label_2
: The vector of containing group label corresponding to the second main effect. For one-way ANOVA, it is NULL.
Centofanti, F., Colosimo, B.M., Grasso, M.L., Menafoglio, A., Palumbo, B., Vantini, S. (2021). Robust Functional ANOVA with Application to Additive Manufacturing. arXiv preprint arXiv:2112.10643.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | library(rofanova)
data_out<-simulate_data(scenario="one-way")
label_1=data_out$label_1
X_fdata<-data_out$X_fdata
B=10
cores=1
per_list_median<-rofanova(X_fdata,label_1,B = B,family="median",cores=cores)
pvalue_median_vec<-per_list_median$pval_vec
per_list_huber<-rofanova(X_fdata,label_1,B = B,family="huber",cores=cores)
pvalue_huber_vec<-per_list_huber$pval_vec
per_list_bisquare<-rofanova(X_fdata,label_1,B = B,family="bisquare",cores=cores)
pvalue_bisquare_vec<-per_list_bisquare$pval_vec
per_list_hampel<-rofanova(X_fdata,label_1,B = B,family="hampel",cores=cores)
pvalue_hampel_vec<-per_list_hampel$pval_vec
per_list_optimal<-rofanova(X_fdata,label_1,B = B,family="optimal",cores=cores)
pvalue_optimal<-per_list_optimal$pval
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.