View source: R/updateRollingLDA.R
| updateRollingLDA | R Documentation |
Performs an update of an existing object consisting of a rolling version of Latent Dirichlet Allocation.
updateRollingLDA(
x,
texts,
dates,
chunks,
memory,
param = getParam(x),
compute.topics = TRUE,
memory.fallback = 0L,
...
)
## S3 method for class 'RollingLDA'
RollingLDA(
x,
texts,
dates,
chunks,
memory,
param = getParam(x),
compute.topics = TRUE,
memory.fallback = 0L,
...
)
x |
[ |
texts |
[ |
dates |
[ |
chunks |
[ |
memory |
[ |
param |
[
|
compute.topics |
[ |
memory.fallback |
[ |
... |
not implemented |
The function uses an existing RollingLDA object and
models new texts with a specified memory as initialization of the new LDA chunk.
The function returns a RollingLDA object. You can receive results and
all other elements of this object with getter functions (see getChunks).
[named list] with entries
id[character(1)] See above.
ldaLDA object of the fitted RollingLDA.
docs[named list] with modeled texts in a preprocessed format.
See LDAprep
dates[named Date] with dates of the modeled texts.
vocab[character] with the vocabularies considered
for modeling.
chunks[data.table] with specifications for each
model chunk.
param[named list] with parameter specifications for
vocab.abs [integer(1)], vocab.rel [0,1],
vocab.fallback [integer(1)] and
doc.abs [integer(1)]. See above for explanation.
Other RollingLDA functions:
RollingLDA(),
as.RollingLDA(),
getChunks()
roll_lda = RollingLDA(texts = economy_texts[economy_dates < "2008-05-01"],
dates = economy_dates[economy_dates < "2008-05-01"],
chunks = "month",
memory = "month",
init = 100,
K = 10,
type = "lda")
# updateRollingLDA = RollingLDA, if first argument is a RollingLDA object
roll_update = RollingLDA(roll_lda,
texts = economy_texts[economy_dates >= "2008-05-01"],
dates = economy_dates[economy_dates >= "2008-05-01"],
chunks = "month",
memory = "month")
roll_update
getChunks(roll_update)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.