rpca: RobustPCA: Decompose a Matrix into Low-Rank and Sparse Components

Suppose we have a data matrix, which is the superposition of a low-rank component and a sparse component. Candes, E. J., Li, X., Ma, Y., & Wright, J. (2011). Robust principal component analysis?. Journal of the ACM (JACM), 58(3), 11. prove that we can recover each component individually under some suitable assumptions. It is possible to recover both the low-rank and the sparse components exactly by solving a very convenient convex program called Principal Component Pursuit; among all feasible decompositions, simply minimize a weighted combination of the nuclear norm and of the L1 norm. This package implements this decomposition algorithm resulting with Robust PCA approach.

Install the latest version of this package by entering the following in R:
install.packages("rpca")
AuthorMaciek Sykulski [aut, cre]
Date of publication2015-07-31 01:15:38
MaintainerMaciek Sykulski <macieksk@gmail.com>
LicenseGPL-2 | GPL-3
Version0.2.3

View on CRAN

Questions? Problems? Suggestions? or email at ian@mutexlabs.com.

Please suggest features or report bugs with the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.