View source: R/subset.pcss.core.R
subset.pcss.core | R Documentation |
pcss.core
Outputsubset.pcss.core
returns names of individuals/genotypes in the core
collection from pcss.core
Output.
## S3 method for class 'pcss.core'
subset(x, criterion = c("size", "variance", "logistic"), ...)
x |
An object of class |
criterion |
The core collection generation criterion. Either
|
... |
Unused. |
Use "size"
to return names of individuals/genotypes in the core
collection according to the threshold size
criterion or use
"variance"
to return names according to the variability threshold
criterion or use "logistic"
to return names according to inflection
point of rate of progress of cumulative variability retained identified by
logistic regression.
The names of individuals/genotypes in the core collection as a character vector.
pcss.core
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Prepare example data
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
suppressPackageStartupMessages(library(EvaluateCore))
# Get data from EvaluateCore
data("cassava_EC", package = "EvaluateCore")
data = cbind(Genotypes = rownames(cassava_EC), cassava_EC)
quant <- c("NMSR", "TTRN", "TFWSR", "TTRW", "TFWSS", "TTSW", "TTPW", "AVPW",
"ARSR", "SRDM")
qual <- c("CUAL", "LNGS", "PTLC", "DSTA", "LFRT", "LBTEF", "CBTR", "NMLB",
"ANGB", "CUAL9M", "LVC9M", "TNPR9M", "PL9M", "STRP", "STRC",
"PSTR")
rownames(data) <- NULL
# Convert qualitative data columns to factor
data[, qual] <- lapply(data[, qual], as.factor)
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# With quantitative data
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
out1 <- pcss.core(data = data, names = "Genotypes",
quantitative = quant,
qualitative = NULL, eigen.threshold = NULL, size = 0.2,
var.threshold = 0.75)
# Core sets
out1$cores.info
# Fetch genotype names of core set by size criterion
subset(x = out1, criterion = "size")
# Fetch genotype names of core set by variance criterion
subset(x = out1, criterion = "variance")
# Fetch genotype names of core set by logistic regression criterion
subset(x = out1, criterion = "logistic")
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Get core sets with PCSS (qualitative data)
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
out2 <- pcss.core(data = data, names = "Genotypes", quantitative = NULL,
qualitative = qual, eigen.threshold = NULL,
size = 0.2, var.threshold = 0.75)
# Core sets
out2$cores.info
# Fetch genotype names of core set by size criterion
subset(x = out2, criterion = "size")
# Fetch genotype names of core set by variance criterion
subset(x = out2, criterion = "variance")
# Fetch genotype names of core set by logistic regression criterion
subset(x = out2, criterion = "logistic")
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Get core sets with PCSS (quantitative and qualitative data)
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
out3 <- pcss.core(data = data, names = "Genotypes",
quantitative = quant,
qualitative = qual, eigen.threshold = NULL)
# Core sets
out3$cores.info
# Fetch genotype names of core set by size criterion
subset(x = out3, criterion = "size")
# Fetch genotype names of core set by variance criterion
subset(x = out3, criterion = "variance")
# Fetch genotype names of core set by logistic regression criterion
subset(x = out3, criterion = "logistic")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.