Functions to allow users to build and analyze design consistent tree and random forest models using survey data from a complex sample design. The algorithm can fit a linear model to survey data in each node obtained by recursively partitioning the data. The splitting variables and selected splits are obtained using a randomized permutation test procedure which adjusted for complex sample design features used to obtain the data. Likewise the model fitting algorithm produces designconsistent coefficients to any specified least squares linear model between the dependent and independent variables used in the end nodes. The main functions return the resulting binary tree or random forest as an object of "rpms" or "rpms_forest" type. The package also provides a number of functions and methods available for use with these object types.
Package details 


Author  Daniell Toth [aut, cre] 
Maintainer  Daniell Toth <danielltoth@yahoo.com> 
License  CC0 
Version  0.4.0 
Package repository  View on CRAN 
Installation 
Install the latest version of this package by entering the following in R:

Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.