Annual maximum streamflow in central Appalachia

Description

The data on annual maximum streamflow at 104 gaging stations in the central Appalachia region of the United States contains the sample L-moments ratios (L-CV, L-skewness and L-kurtosis) as used by Hosking and Wallis (1997) to illustrate regional freqency analysis (RFA).

Usage

1

Format

A data frame with 104 observations on the following 3 variables:

L-CV

L-coefficient of variation

L-skewness

L-coefficient of skewness

L-kurtosis

L-coefficient of kurtosis

Details

The sample L-moment ratios (L-CV, L-skewness and L-kurtosis) of a site are regarded as a point in three dimensional space.

Source

Hosking, J. R. M. and J. R. Wallis (1997), Regional Frequency Analysis: An Approach Based on L-moments. Cambridge University Press, p.175–185

References

Neykov, N.M., Neytchev, P.N., Van Gelder, P.H.A.J.M. and Todorov V. (2007), Robust detection of discordant sites in regional frequency analysis, Water Resources Research, 43, W06417, doi:10.1029/2006WR005322, http://www.agu.org/pubs/crossref/2007/2006WR005322.shtml

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
    data(Appalachia)

    # plot a matrix of scatterplots
    pairs(Appalachia,
          main="Appalachia data set",
          pch=21,
          bg=c("red", "green3", "blue"))

    mcd<-CovMcd(Appalachia)
    mcd
    plot(mcd, which="dist", class=TRUE)
    plot(mcd, which="dd", class=TRUE)

    ##  identify the discordant sites using robust distances and compare 
    ##  to the classical ones
    mcd <- CovMcd(Appalachia)
    rd <- sqrt(getDistance(mcd))
    ccov <- CovClassic(Appalachia)
    cd <- sqrt(getDistance(ccov))
    r.out <- which(rd > sqrt(qchisq(0.975,3)))
    c.out <- which(cd > sqrt(qchisq(0.975,3)))
    cat("Robust: ", length(r.out), " outliers: ", r.out,"\n")
    cat("Classical: ", length(c.out), " outliers: ", c.out,"\n")

Want to suggest features or report bugs for rdrr.io? Use the GitHub issue tracker.