README.md

rrum

Build
Status Package-License CRAN Version
Badge CRAN
Status RStudio CRAN Mirror’s Monthly
Downloads RStudio CRAN Mirror’s Total
Downloads Coverage
status

The goal of rrum is to provide an implementation of Gibbs sampling algorithm for Bayesian Estimation of Reduced Reparameterized Unified Model (rrum), described by Culpepper and Hudson (2017) \<doi: 10.1177/0146621617707511>.

Installation

You can install rrum from CRAN using:

install.packages("rrum")

Or, you can be on the cutting-edge development version on GitHub using:

if(!requireNamespace("devtools")) install.packages("devtools")
devtools::install_github("tmsalab/rrum")

Usage

To use rrum, load the package using:

library("rrum")
#> Loading required package: simcdm

From here, the rRUM model can be estimated using:

rrum_model = rrum(<data>, <q>)

Additional parameters can be accessed with:

rrum_model = rrum(<data>, <q>, chain_length = 10000L,
                  as = 1, bs = 1, ag = 1, bg = 1,
                  delta0 = rep(1, 2^ncol(Q)))

rRUM item data can be simulated using:

# Set a seed for reproducibility
set.seed(888)

# Setup Parameters
N = 15   # Number of Examinees / Subjects
J = 10   # Number of Items
K = 2    # Number of Skills / Attributes

# Simulate identifiable Q matrix
Q = sim_q_matrix(J, K)

# Penalties for failing to have each of the required attributes
rstar  = .5 * Q

# The probabilities of answering each item correctly for individuals 
# who do not lack any required attribute
pistar = rep(.9, J)

# Latent Class Probabilities
pis = c(.1, .2, .3, .4)

# Generate latent attribute profile with custom probability (N subjects by K skills)
subject_alphas = sim_subject_attributes(N, K, prob = pis)

# Simulate rrum items
rrum_items = simcdm::sim_rrum_items(Q, rstar, pistar, subject_alphas)

Authors

Steven Andrew Culpepper, Aaron Hudson, and James Joseph Balamuta

Citing the rrum package

To ensure future development of the package, please cite rrum package if used during an analysis or simulation study. Citation information for the package may be acquired by using in R:

citation("rrum")

License

GPL (>= 2)



Try the rrum package in your browser

Any scripts or data that you put into this service are public.

rrum documentation built on May 2, 2019, 6:38 a.m.