multisimsum | R Documentation |
multisimsum
is an extension of simsum()
that can handle multiple estimated parameters at once.
multisimsum
calls simsum()
internally, each estimands at once.
There is only one new argument that must be set when calling multisimsum
: par
, a string representing the column of data
that identifies the different estimands.
Additionally, with multisimsum
the argument true
can be a named vector, where names correspond to each estimand (see examples).
Otherwise, constant values (or values identified by a column in data
) will be utilised.
See vignette("E-custom-inputs", package = "rsimsum")
for more details.
multisimsum(
data,
par,
estvarname,
se = NULL,
true = NULL,
methodvar = NULL,
ref = NULL,
by = NULL,
ci.limits = NULL,
df = NULL,
dropbig = FALSE,
x = FALSE,
control = list()
)
data |
A |
par |
The name of the variable containing the methods to compare.
Can be |
estvarname |
The name of the variable containing the point estimates. Note that some column names are forbidden: these are listed below in the Details section. |
se |
The name of the variable containing the standard errors of the point estimates. Note that some column names are forbidden: these are listed below in the Details section. |
true |
The true value of the parameter; this is used in calculations of bias, relative bias, coverage, and mean squared error and is required whenever these performance measures are requested.
|
methodvar |
The name of the variable containing the methods to compare.
For instance, methods could be the models compared within a simulation study.
Can be |
ref |
Specifies the reference method against which relative precision will be calculated.
Only useful if |
by |
A vector of variable names to compute performance measures by a list of factors. Factors listed here are the (potentially several) data-generating mechanisms used to simulate data under different scenarios (e.g. sample size, true distribution of a variable, etc.).
Can be |
ci.limits |
Can be used to specify the limits (lower and upper) of confidence intervals used to calculate coverage and bias-eliminated coverage.
Useful for non-Wald type estimators (e.g. bootstrap).
Defaults to |
df |
Can be used to specify that a column containing the replication-specific number of degrees of freedom that will be used to calculate confidence intervals for coverage (and bias-eliminated coverage) assuming t-distributed critical values (rather than normal theory intervals).
See |
dropbig |
Specifies that point estimates or standard errors beyond the maximum acceptable values should be dropped. Defaults to |
x |
Set to |
control |
A list of parameters that control the behaviour of
|
The following names are not allowed for estvarname
, se
, methodvar
, by
, par
: stat
, est
, mcse
, lower
, upper
, :methodvar
.
An object of class multisimsum
.
data("frailty", package = "rsimsum")
ms <- multisimsum(
data = frailty,
par = "par", true = c(trt = -0.50, fv = 0.75),
estvarname = "b", se = "se", methodvar = "model",
by = "fv_dist"
)
ms
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.