| posterior_predict | R Documentation |
Compute outcome predictions using posterior samples. Exposure data for prediction can be either original data used for model fit or new data.
posterior_predict(object, ...)
posterior_epred(object, ...)
posterior_linpred(object, transform = FALSE, ...)
## S3 method for class 'stanemax'
posterior_predict(
object,
newdata = NULL,
returnType = "matrix",
newDataType = "raw",
...
)
## S3 method for class 'stanemaxbin'
posterior_predict(
object,
newdata = NULL,
returnType = "matrix",
newDataType = "raw",
...
)
## S3 method for class 'stanemax'
posterior_epred(object, newdata = NULL, newDataType = "raw", ...)
## S3 method for class 'stanemaxbin'
posterior_epred(object, newdata = NULL, newDataType = "raw", ...)
## S3 method for class 'stanemax'
posterior_linpred(
object,
transform = FALSE,
newdata = NULL,
newDataType = "raw",
...
)
## S3 method for class 'stanemaxbin'
posterior_linpred(
object,
transform = FALSE,
newdata = NULL,
newDataType = "raw",
...
)
posterior_predict_quantile(
object,
newdata = NULL,
ci = 0.9,
pi = 0.9,
newDataType = c("raw", "modelframe")
)
Run vignette("emaxmodel", package = "rstanemax") to see how you can
use the posterior prediction for plotting estimated Emax curve.
An object that contain predicted response with posterior distribution
of parameters. The default is a matrix containing predicted response for
stan_emax() and .epred for stan_emax_binary(). Each row of the matrix
is a vector of predictions generated using a single draw of the model
parameters from the posterior distribution.
If either dataframe or tibble is specified, the function returns a data
frame or tibble object in a long format - each row is a prediction
generated using a single draw of the model parameters and a corresponding
exposure.
Several types of predictions are generated with this function.
For continuous endpoint model (stan_emax()),
.linpred & .epred: prediction without considering residual
variability and is intended to provide credible interval of "mean"
response.
.prediction: include residual variability in its calculation,
therefore the range represents prediction interval of observed response.
For binary endpoint model (stan_emax_binary()),
.linpred: predicted probability on logit scale
.epred: predicted probability on probability scale
.prediction: predicted event (1) or non-event (0)
The return object also contains exposure and parameter values used for calculation.
With posterior_predict_quantile() function, you can obtain quantiles
of respHat and response as specified by ci and pi.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.