Description Usage Arguments Details Value Author(s) References See Also
Compute the near-optimal QB decomposition of a rectangular matrix.
1 |
A |
array_like; |
k |
integer, optional; |
p |
integer, optional; |
q |
integer, optional; |
sdist |
string c( 'unif', 'normal', 'rademacher'), optional; |
rand |
bool, optional; |
The randomized QB decomposition factors a rectangular (m,n) matrix A as A = Q * B. Q is an (m,k) matrix with orthogonal columns, and B a (k,n) matrix. The target rank is assumed to be k << min(m,n).
p is an oversampling parameter to improve the approximation. A value between 5 and 10 is recommended, and p=10 is set by default.
The parameter q specifies the number of power (subspace) iterations to reduce the approximation error. This is recommended if the the singular values decay slowly. In practice 1 or 2 iterations achieve good results, however, computing power iterations increases the computational time. The number of power iterations is set to q=2 by default.
rqb
returns a list containing the following components:
array_like;
matrix with orthogonal columns; (m, k) dimensional array.
array_like;
smaller matrix; (k, n) dimensional array.
N. Benjamin Erichson, erichson@berkeley.edu
[1] N. B. Erichson, S. Voronin, S. L. Brunton and J. N. Kutz. 2019. Randomized Matrix Decompositions Using R. Journal of Statistical Software, 89(11), 1-48. doi: 10.18637/jss.v089.i11.
[2] N. Halko, P. Martinsson, and J. Tropp. "Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions" (2009). (available at arXiv https://arxiv.org/abs/0909.4061).
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.