| plotFactor | R Documentation |
Creates a bar plot of relative gene expression (fold change) values from 1-, 2-, or 3-factor experiments, including error bars and statistical significance annotations.
plotFactor(
data,
x_col,
y_col,
Lower.se_col,
Upper.se_col,
group_col = NULL,
facet_col = NULL,
letters_col = NULL,
letters_d = 0.2,
col_width = 0.8,
err_width = 0.15,
dodge_width = 0.8,
fill_colors = NULL,
color = "black",
alpha = 1,
base_size = 12,
legend_position = "right",
...
)
data |
Data frame containing expression results |
x_col |
Character. Column name for x-axis |
y_col |
Character. Column name for bar height |
Lower.se_col |
Character. Column name for lower SE |
Upper.se_col |
Character. Column name for upper SE |
group_col |
Character. Column name for grouping bars (optional) |
facet_col |
Character. Column name for faceting (optional) |
letters_col |
Character. Column name for significance letters (optional) |
letters_d |
Numeric. Vertical offset for letters (default |
col_width |
Numeric. Width of bars (default |
err_width |
Numeric. Width of error bars (default |
dodge_width |
Numeric. Width of dodge for grouped bars (default |
fill_colors |
Optional vector of fill colors to change the default colors |
color |
Optional color for the bar outline |
alpha |
Numeric. Transparency of bars (default |
base_size |
Numeric. Base font size for theme (default |
legend_position |
Character or numeric vector. Legend position (default |
... |
Additional ggplot2 layer arguments |
ggplot2 plot object
Ghader Mirzaghaderi
data <- read.csv(system.file("extdata", "data_2factorBlock3ref.csv", package = "rtpcr"))
res <- ANOVA_DDCt(x = data,
numOfFactors = 2,
numberOfrefGenes = 3,
block = "block",
mainFactor.column = 2,
p.adj = "none")
df <- res$relativeExpression
p1 <- plotFactor(
data = df,
x_col = "contrast",
y_col = "RE",
group_col = "gene",
facet_col = "gene",
Lower.se_col = "Lower.se.RE",
Upper.se_col = "Upper.se.RE",
letters_col = "sig",
letters_d = 0.2,
alpha = 1,
col_width = 0.7,
dodge_width = 0.7,
base_size = 14,
legend_position = "none")
p1
data2 <- read.csv(system.file("extdata", "data_3factor.csv", package = "rtpcr"))
#Perform analysis first
res <- ANOVA_DCt(
data2,
numOfFactors = 3,
numberOfrefGenes = 1,
block = NULL)
df <- res$relativeExpression
# Generate three-factor bar plot
p <- plotFactor(
df,
x_col = "SA",
y_col = "log2FC",
group_col = "Type",
facet_col = "Conc",
Lower.se_col = "Lower.se.log2FC",
Upper.se_col = "Upper.se.log2FC",
letters_col = "sig",
letters_d = 0.3,
col_width = 0.7,
dodge_width = 0.7,
#fill_colors = c("blue", "brown"),
color = "black",
base_size = 14,
alpha = 1,
legend_position = c(0.1, 0.2))
p
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.