Nothing
The function runMCMC_btadjust()
now allows automatic parallelization of different Markov chains of the MCMC parts of the algorithm which can be of interest when we have several Markov chains. When the user wishes to use parallelization, the only difference with the preceding calls are the addition of control.MCMC=list(parallelize=TRUE)
- or of parallelize=TRUE
in control.MCMC
if already present. Here are examples below, with 2 chains only (a condition required by CRAN to accept parallelization in vignettes).
library(parallel) ### put here to pass CRAN tests: https://stackoverflow.com/questions/41307178/error-processing-vignette-failed-with-diagnostics-4-simultaneous-processes-spa options(mc.cores=2) ### adapted the number of chains for the same reason Nchains.parallel<-2 out.mcmc.Nimble.parallel<-runMCMC_btadjust(code=ModelCode, constants = ModelConsts, data = ModelData, MCMC_language="Nimble", Nchains=Nchains.parallel, params=params, inits=Inits[1:Nchains.parallel], niter.min=1000, niter.max=300000, nburnin.min=100, nburnin.max=200000, thin.min=1, thin.max=1000, conv.max=1.05, neff.min=1000, control.MCMC=list(parallelize=TRUE)) out.mcmc.Jags.parallel<-runMCMC_btadjust(code=modeltotransfer, data = ModelData.Jags, MCMC_language="Jags", Nchains=Nchains.parallel, params=params, inits=Inits[1:Nchains.parallel], niter.min=1000,niter.max=300000, nburnin.min=100,nburnin.max=200000, thin.min=1,thin.max=1000, conv.max=1.05,neff.min=1000, control.MCMC=list(parallelize=TRUE))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.