train.ruta_autoencoder | R Documentation |
This function compiles the neural network described by the learner object and trains it with the input data.
## S3 method for class 'ruta_autoencoder' train( learner, data, validation_data = NULL, metrics = NULL, epochs = 20, optimizer = "rmsprop", ... ) train(learner, ...)
learner |
A |
data |
Training data: columns are attributes and rows are instances |
validation_data |
Additional numeric data matrix which will not be used for training but the loss measure and any metrics will be computed against it |
metrics |
Optional list of metrics which will evaluate the model but
won't be optimized. See |
epochs |
The number of times data will pass through the network |
optimizer |
The optimizer to be used in order to train the model, can
be any optimizer object defined by Keras (e.g. |
... |
Additional parameters for
|
Same autoencoder passed as parameter, with trained internal models
\link{autoencoder}
# Minimal example ================================================ if (interactive() && keras::is_keras_available()) iris_model <- train(autoencoder(2), as.matrix(iris[, 1:4])) # Simple example with MNIST ====================================== library(keras) if (interactive() && keras::is_keras_available()) { # Load and normalize MNIST mnist = dataset_mnist() x_train <- array_reshape( mnist$train$x, c(dim(mnist$train$x)[1], 784) ) x_train <- x_train / 255.0 x_test <- array_reshape( mnist$test$x, c(dim(mnist$test$x)[1], 784) ) x_test <- x_test / 255.0 # Autoencoder with layers: 784-256-36-256-784 learner <- autoencoder(c(256, 36), "binary_crossentropy") train( learner, x_train, epochs = 1, optimizer = "rmsprop", batch_size = 64, validation_data = x_test, metrics = list("binary_accuracy") ) }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.