rnorm.Q | R Documentation |
General function to make use of sparse matrix methods to efficiently simulate random multivariate normal random variables with sparse precision matrices.
rnorm.Q(Q, mu = rep(0, nrow(Q)), X = Matrix(1, nrow = nrow(Q), ncol =
1),
zero.constraint = FALSE, canon = FALSE, diag.adjust = .Machine$double.eps * 10)
Q |
Precision matrix, defined as a sparse Matrix object. |
mu |
Mean vector of dimension equal to the dimension of Q. |
X |
Matrix of vectors which should be orthogonal to the simulated random variable. |
zero.constraint |
If TRUE, then the simulated random variable is orthogonal to the columns of X. |
canon |
If TRUE, then draw from the 'canonical form'. |
diag.adjust |
Numeric value to be added to the diagonal of Q to make it positive definite. |
In the 'canonical form', the variable is drawn from:
v~N(Q^-1 mu, Q^-1)
In the non-canonical form, the variable is drawn from
v~N( mu, Q^-1)
A vector of the resulting random variable.
Ephraim M. Hanks
Rue and Held 2005. Gaussian Markov Random Fields: theory and applications. Chapman and Hall.
ras=raster(nrow=30,ncol=30)
extent(ras) <- c(0,30,0,30)
values(ras) <- 1
int=ras
cov.ras=ras
## simulate "resistance" raster
B.int=get.TL(int)
Q.int=get.Q(B.int,1)
values(cov.ras) <- as.numeric(rnorm.Q(Q.int,zero.constraint=TRUE))
plot(cov.ras)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.