| denoise | R Documentation |
Denoise the signal x using the 2-band wavelet system described
by the filter h using either the traditional discrete wavelet
transform (DWT) or the linear shift invariant discrete wavelet
transform (also known as the undecimated DWT (UDWT)).
denoise(x, h, type, option) denoise.dwt(x, h, option = default.dwt.option) denoise.udwt(x, h, option = default.udwt.option)
x |
1D or 2D signal to be denoised | ||
h |
numeric scalar specifying scaling filter to be applied | ||
type |
type of transform. Valid values are:
| ||
option |
list containing desired transformation settings |
The transformation settings in the option list are:
logical scalar. If TRUE, threshold the low-pass component.
thld = c*MAD(noise_estimate)
Valid values are:
| MAD.VARIANCE.ESTIMATOR | Mean absolute deviation |
| STD.VARIANCE.ESTIMATOR | Classical numerical std estimate |
Valid values are:
| SOFT.THRESHOLD.TYPE | Soft thresholding |
| HARD.THRESHOLD.TYPE | Hard thresholding |
number of levels in wavelet
decomposition. Setting this to MAX.DECOMPOSITION will allow
maximal decomposition.
actual threshold to use. Setting this to anything but
CALC.THRESHOLD.TO.USE will disable the variance.estimator
setting.
Returns a list with components:
xd |
estimate of noise free signal |
xn |
estimated noise signal ( |
option |
list of actual parameters used. It is configured
the same way as the input option list with an additional
element - |
Both denoise.dwt and denoise.udwt are convenience routines
that call the denoise routine with appropriate default arguments.
P. Roebuck proebuck1701@gmail.com
sig <- makesig(SIGNAL.DOPPLER) h <- daubcqf(6) ret.dwt <- denoise.dwt(sig$x, h$h.0)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.