sValues | R Documentation |
The function sValues
performs the extreme bound analysis proposed by Leamer (2014) and
discussed in Leamer (2015).
For further details see the package vignette.
sValues(
...,
R2_bounds = c(0.1, 0.5, 1),
favorites = NULL,
R2_favorites = NULL,
scale = TRUE
)
## S3 method for class 'formula'
sValues(
formula,
data,
R2_bounds = c(0.1, 0.5, 1),
favorites = NULL,
R2_favorites = NULL,
scale = TRUE,
...
)
## S3 method for class 'matrix'
sValues(
m,
R2_bounds = c(0.1, 0.5, 1),
favorites = NULL,
R2_favorites = NULL,
scale = TRUE,
...
)
## S3 method for class 'data.frame'
sValues(
df,
R2_bounds = c(0.1, 0.5, 1),
favorites = NULL,
R2_favorites = NULL,
scale = TRUE,
...
)
... |
arguments passed to other methods. The first argument should be a |
R2_bounds |
a numeric vector with two or more R2 bounds to be considered in the analysis. The default values are
|
favorites |
optional - a character vector that specifies the "favorite" variables to be used in the analysis.
These variables will have different lower and upper R2 bounds as defined in the |
R2_favorites |
optional - a numeric vector with two or more R2 bounds for the "favorite" variables. |
scale |
should the variables be scaled/standardized to zero mean and unit variance?
The default is |
formula |
an object of the class |
data |
needed only when you pass a formula as first parameter. An object of the class |
m |
an object of class |
df |
an object of class |
sValues
returns an object a list of class "sValues" containing the main results of the analysis:
info
: a list
with the general information about the parameters used in the analysis, such as the
formula, the data, the bounds and favorite variables.
simple
: a list
with the results of the simple linear regressions for each variable.
all
: the results of the linear regression with all variables.
bayes
: a list
with the results of the bayesian regression for each combination of the R2 bounds.
Each bayesian regression includes the coefficient estimates, the variance-covariance matrix and the t-values.
ext_bounds
: a list
with the extreme bounds estimates for each combination of the R2 bounds.
s_values
: a data.frame
with the s_values for each combination of the R2 bounds.
Leamer, E. (2014). S-values: Conventional context-minimal measures of the sturdiness of regression coefficients. Working Paper
Leamer, E. (2015). S-values and bayesian weighted all-subsets regressions. European Economic Review.
coef.sValues
to extract coefficients or statistics;
print.sValues
for printing;
summary.sValues
for summaries;
plot.sValues
for plots.
# growth regressions example
## All variables, No favorites
data(economic_growth)
eg_sv <- sValues(GR6096 ~ ., data = economic_growth)
eg_sv # prints results
plot(eg_sv, R2_bounds = c(0.5, 1))
plot(eg_sv, type = "beta_plot", variable = "P60", error_bar = TRUE)
coefs_eg <- coef(eg_sv) # extract coefficients
coefs_eg
## only 14 variables
eg_sv_14 <- sValues(GR6096 ~GDPCH60L + OTHFRAC + ABSLATIT +
LT100CR + BRIT + GOVNOM1 + WARTIME +
SCOUT + P60 + PRIEXP70 + OIL +
H60 + POP1560 + POP6560, data = economic_growth)
eg_sv_14
coefs_eg_14 <- coef(eg_sv_14)
## With 14 favorites among all variables
favorites <- c("GDPCH60L", "OTHFRAC", "ABSLATIT", "LT100CR",
"BRIT", "GOVNOM1", "WARTIME", "SCOUT",
"P60", "PRIEXP70", "OIL", "H60",
"POP1560", "POP6560")
eg_sv_fav <- sValues(GR6096 ~ ., data = economic_growth, R2_bounds = c(0.5, 1),
favorites = favorites, R2_favorites = c(0.4, 0.8))
eg_sv_fav
plot(eg_sv_fav, R2_bounds = c(0.5, 1))
plot(eg_sv_fav, type = "beta_plot", variable = "P60", error_bar = TRUE)
coefs_eg_fav <- coef(eg_sv_fav)
coefs_eg_fav
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.