| sValues | R Documentation | 
The function sValues performs the extreme bound analysis proposed by Leamer (2014) and 
discussed in Leamer (2015). 
For further details see the package vignette.
sValues(
  ...,
  R2_bounds = c(0.1, 0.5, 1),
  favorites = NULL,
  R2_favorites = NULL,
  scale = TRUE
)
## S3 method for class 'formula'
sValues(
  formula,
  data,
  R2_bounds = c(0.1, 0.5, 1),
  favorites = NULL,
  R2_favorites = NULL,
  scale = TRUE,
  ...
)
## S3 method for class 'matrix'
sValues(
  m,
  R2_bounds = c(0.1, 0.5, 1),
  favorites = NULL,
  R2_favorites = NULL,
  scale = TRUE,
  ...
)
## S3 method for class 'data.frame'
sValues(
  df,
  R2_bounds = c(0.1, 0.5, 1),
  favorites = NULL,
  R2_favorites = NULL,
  scale = TRUE,
  ...
)
| ... | arguments passed to other methods. The first argument should be a  | 
| R2_bounds | a numeric vector with two or more R2 bounds to be considered in the analysis. The default values are
 | 
| favorites | optional - a character vector that specifies the "favorite" variables to be used in the analysis.
These variables will have different lower and upper R2 bounds as defined in the  | 
| R2_favorites | optional - a numeric vector with two or more R2 bounds for the "favorite" variables. | 
| scale | should the variables be scaled/standardized to zero mean and unit variance? 
The default is  | 
| formula | an object of the class  | 
| data | needed only when you pass a formula as first parameter. An object of the class  | 
| m | an object of class  | 
| df | an object of class  | 
sValues returns an object a list of class "sValues" containing the main results of the analysis:
info: a list with the general information about the parameters used in the analysis, such as the 
formula, the data, the bounds and favorite variables.
simple: a list with the results of the simple linear regressions for each variable.
all: the results of the linear regression with all variables.
bayes: a list with the results of the bayesian regression for each combination of the R2 bounds. 
Each bayesian regression includes the coefficient estimates, the variance-covariance matrix and the t-values.
ext_bounds: a list with the extreme bounds estimates for each combination of the R2 bounds.
s_values: a data.frame with the s_values for each combination of the R2 bounds.
Leamer, E. (2014). S-values: Conventional context-minimal measures of the sturdiness of regression coefficients. Working Paper
Leamer, E. (2015). S-values and bayesian weighted all-subsets regressions. European Economic Review.
coef.sValues to extract coefficients or statistics; 
print.sValues for printing;
summary.sValues for summaries;
plot.sValues for plots.
# growth regressions example
## All variables, No favorites
data(economic_growth)
eg_sv <- sValues(GR6096 ~ ., data = economic_growth)
eg_sv # prints results
plot(eg_sv, R2_bounds = c(0.5, 1))
plot(eg_sv, type = "beta_plot", variable = "P60", error_bar = TRUE)
coefs_eg <- coef(eg_sv) # extract coefficients
coefs_eg
##  only 14 variables
eg_sv_14 <-  sValues(GR6096 ~GDPCH60L + OTHFRAC + ABSLATIT + 
                       LT100CR + BRIT + GOVNOM1 + WARTIME + 
                       SCOUT + P60 + PRIEXP70 + OIL + 
                       H60 + POP1560 + POP6560, data = economic_growth)
eg_sv_14
coefs_eg_14 <- coef(eg_sv_14)
## With 14 favorites among all variables
favorites <- c("GDPCH60L", "OTHFRAC", "ABSLATIT", "LT100CR", 
              "BRIT", "GOVNOM1", "WARTIME", "SCOUT", 
              "P60", "PRIEXP70", "OIL", "H60", 
              "POP1560", "POP6560")
eg_sv_fav <- sValues(GR6096 ~ ., data = economic_growth, R2_bounds = c(0.5, 1),
                    favorites = favorites, R2_favorites = c(0.4, 0.8))
eg_sv_fav
plot(eg_sv_fav, R2_bounds = c(0.5, 1))
plot(eg_sv_fav, type = "beta_plot", variable = "P60", error_bar = TRUE)
coefs_eg_fav <- coef(eg_sv_fav)
coefs_eg_fav
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.