| saeFH.uprop | R Documentation | 
This function gives the transformed EBLUP and Empirical Best Predictor (EBP) based on a univariate Fay-Herriot model.
saeFH.uprop(formula, vardir, MAXITER = 100, PRECISION = 1e-04, L = 1000, data)
formula | 
 an object of class   | 
vardir | 
 vector containing the sampling variances of direct estimators for each domain. The values must be sorted as the variables in   | 
MAXITER | 
 maximum number of iterations allowed in the Fisher-scoring algorithm, Default:   | 
PRECISION | 
 convergence tolerance limit for the Fisher-scoring algorithm, Default:   | 
L | 
 number of Monte Carlo iterations in calculating Empirical Best Predictor (EBP), Default:   | 
data | 
 optional data frame containing the variables named in   | 
The function returns a list with the following objects:
est | 
 a data frame containing values of the estimators for each domains.  | 
PC : transformed EBLUP estimators using inverse alr.
EBP : Empirical Best Predictor using Monte Carlo.
fit | 
 a list containing the following objects (model is fitted using REML):  | 
convergence : a logical value equal to TRUE if Fisher-scoring algorithm converges in less than MAXITER iterations.
iterations : number of iterations performed by the Fisher-scoring algorithm.
estcoef : a data frame that contains the estimated model coefficients, standard errors, t-statistics, and p-values of each coefficient.
refvar : estimated random effects variance.
components | 
 a data frame containing the following columns:  | 
random.effects : estimated random effect values of the fitted model.
residuals : residuals of the fitted model.
## Not run: 
## Load dataset
data(datasaeu)
## If data is defined
Fo = y ~ x1 + x2
vardir = "vardir"
model.data <- saeFH.uprop(Fo, vardir, data = datasaeu)
## If data is undefined
Fo = datasaeu$y ~ datasaeu$x1 + datasaeu$x2
vardir = datasaeu$vardir
model <- saeFH.uprop(Fo, vardir)
## See the estimators
model$est
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.