saeHB.spatial: saeHB.spatial : Small Area Estimation under Spatial SAR Model...

saeHB.spatialR Documentation

saeHB.spatial : Small Area Estimation under Spatial SAR Model using Hierarchical Bayesian Method

Description

Provides several functions and datasets for area level of Small Area Estimation under Spatial SAR Model using Hierarchical Bayesian (HB) Method. Model-based estimators include the HB estimators based on a Spatial Fay-Herriot model with univariate normal distribution for variable of interest.The 'rjags' package is employed to obtain parameter estimates. For the reference, see Rao and Molina (2015) <doi:10.1002/9781118735855>.

Author(s)

Arina Mana Sikana, Azka Ubaidillah

Maintaner: Arina Mana Sikana 221810195@stis.ac.id

Functions

spatial.normal

This function gives small area estimator under Spatial SAR Model and is implemented to variable of interest (y) that assumed to be a Normal Distribution. The range of data is (-∞ < y < ∞)

.

Reference

  • Rao, J.N.K & Molina. (2015). Small Area Estimation 2nd Edition. New Jersey: John Wiley and Sons, Inc. <doi:10.1002/9781118735855>.

  • J. Kubacki and A. Jedrzejczak. (2016). Small Area Estimation of Income Under Spatial SAR Model. Statistics in Transition New Series, Vol. 17, No. 3, pp. 365–390. <doi: 10.21307/stattrans-2016-028>.

  • H. C. Chung and G. S. Datta. (2020). Bayesian Hierarchical Spatial Models for Small Area Estimation. Research Report Series. Washington, D.C.: U.S. Census Bureau.


saeHB.spatial documentation built on March 18, 2022, 7:35 p.m.