| Poisson | R Documentation |
This function is implemented to variable of interest (y) that assumed to be a Poisson Distribution. The data is a count data, y = 1,2,3,...
Poisson(
formula,
iter.update = 3,
iter.mcmc = 10000,
coef,
var.coef,
thin = 2,
burn.in = 2000,
tau.u = 1,
data
)
formula |
Formula that describe the fitted model |
iter.update |
Number of updates with default |
iter.mcmc |
Number of total iterations per chain with default |
coef |
a vector contains prior initial value of Coefficient of Regression Model for fixed effect with default vector of |
var.coef |
a vector contains prior initial value of variance of Coefficient of Regression Model with default vector of |
thin |
Thinning rate, must be a positive integer with default |
burn.in |
Number of iterations to discard at the beginning with default |
tau.u |
Prior initial value of inverse of Variance of area random effect with default |
data |
The data frame |
This function returns a list of the following objects:
Est |
A vector with the values of Small Area mean Estimates using Hierarchical bayesian method |
refVar |
Estimated random effect variances |
coefficient |
A dataframe with the estimated model coefficient |
plot |
Trace, Dencity, Autocorrelation Function Plot of MCMC samples |
Azka Ubaidillah [aut], Ika Yuni Wulansari [aut], Zaza Yuda Perwira [aut, cre], Jayanti Wulansari [aut, cre], Fauzan Rais Arfizain [aut,cre]
## Load Dataset
library(CARBayesdata)
data(lipdata)
dataPoisson <- lipdata
dataPoissonNs <- lipdata
dataPoissonNs$observed[c(2, 9, 15, 23, 40)] <- NA
## Compute Fitted Model
# observed ~ pcaff
## For data without any nonsampled area
formula <- observed ~ pcaff
v <- c(1, 1)
c <- c(0, 0)
## Using parameter coef and var.coef
saeHBPoisson <- Poisson(formula, coef = c, var.coef = v, iter.update = 10, data = dataPoisson)
saeHBPoisson$Est # Small Area mean Estimates
saeHBPoisson$refVar # Random effect variance
saeHBPoisson$coefficient # coefficient
# Load Library 'coda' to execute the plot
# autocorr.plot(saeHBPoisson$plot[[3]]) is used to generate ACF Plot
# plot(saeHBPoisson$plot[[3]]) is used to generate Density and trace plot
## Do not using parameter coef and var.coef
saeHBPoisson <- Poisson(formula, data = dataPoisson)
## For data with nonsampled area use dataPoissonNs
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.